K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2016

\(1.\left(x-1\right)^5=32\Rightarrow\left(x-1\right)^5=2^5\Rightarrow x-1=2\Rightarrow x=3\)

Vậy x = 3

\(2.Do\)\(\left(x-3\right)^2\ge0\)và  \(!y^2-25!\ge0\)

Mà: \(\left(x-3\right)^2+!y^2-25!=0\Rightarrow\left(x-3\right)^2=0;!y^2-25!=0\Rightarrow x-3=0;y^2-25=0\)

\(\Rightarrow x=3;y^2=25\Rightarrow x=3;y\in\left\{5;-5\right\}\)

Vậy x = 3 và y = 5 hoặc y = -5.

(Dấu ! là GTTĐ nha)

1 tháng 7 2016

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\)

\(\left|\frac{3}{2}x+\frac{1}{9}\right|\ge0;\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0=>\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\) (với mọi x,y)

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|=0\) (theo đề)

Nên \(\left|\frac{3}{2}x+\frac{1}{9}\right|=0=>\frac{3}{2}x=-\frac{1}{9}=>x=-\frac{2}{27}\)

      \(\left|\frac{1}{5}y-\frac{1}{2}\right|=0=>\frac{1}{5}y=\frac{1}{2}=>y=\frac{5}{2}\)

Vậy...........

Ta thấy : \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y+z\right|\ge0\)

Để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y=z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-x-y\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{-1}{2}-\frac{2}{5}\end{cases}}\)

28 tháng 10 2015

(2x-1)^2008\(\ge\)0

(y-2/5)^2008\(\ge\)0

|x+y+z|\(\ge\)0

\(\Rightarrow\)(2x-1)^2008+(y-2/5)^2008+|x+y+z|\(\ge\)0

mà (2x-1)^2008+(y-2/5)^2008+|x+y+z|=0

\(\Rightarrow\)(2x-1)^2008=0;(y-2/5)^2008=0;|x+y+z|=0

x=1/2;y=2/5;z=-9/10

11 tháng 12 2017

Kết quả là x=1/2;y=2/5;z=-9/10

18 tháng 11 2019

\(\frac{\left(-2\right)^3}{5}.\left|\frac{1}{4}-1+2018^0\right|\)

\(=\frac{-8}{5}.\frac{1}{4}\)

\(=-\frac{2}{5}\)

18 tháng 11 2019

\(\frac{\left(-2\right)^3}{5}\)x | \(\frac{1}{4}\)- 1| + 2018 mũ 0

1 tháng 7 2016

Ta có:

3x-1/2 = 0 

3x= 1/2

x= 1/6

và 1/2y + 3/5 =0

     1/2y = -3/5

         y= -6/5

Vậy x= 1/6 và y = -6/5

1 tháng 7 2016

\(\left(3x-\frac{1}{2}\right)+\left(\frac{1}{2}y+\frac{3}{5}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-\frac{1}{2}=0=\frac{1}{6}\\\frac{1}{2}y+\frac{3}{5}=0=\frac{6}{5}\end{cases}}\)

Vậy ......

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

$M=\frac{3(x^2+1)+x^2y^2+y^2-2}{(x+y)^2+5}=\frac{3x^2+x^2y^2+y^2+1}{(x+y)^2+5}$

Ta thấy:

$x^2\geq 0; x^2y^2\geq 0; y^2\geq 0$ nên:

$3x^2+x^2y^2+y^2+1\geq 1>0$ với mọi $x\mathbb{Q}, y\in\mathbb{R}$

$(x+y)^2\geq 0\Rightarrow (x+y)^2+5\geq 5>0$ với mọi 

$x\mathbb{Q}, y\in\mathbb{R}$

Do đó: $M>0$ (do cả tử và mẫu đều lớn hơn 0)

Hay $M$ là số dương (đpcm)