Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài làm:
a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)
\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)
\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)
\(A=4+2\sqrt{3}+5\sqrt{3}-1\)
\(A=3+7\sqrt{3}\)
b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)
\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)
\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)
\(A=2\)
Phần b mình viết nhầm tên thành A, bn sửa thành B nhé
c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(C=\sqrt{3}-1-2-\sqrt{3}\)
\(C=-3\)
\(A=\left(\frac{2+\sqrt{x}}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{2-\sqrt{x}}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\) \(:\left(2-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\)
\(:\left[\frac{2\left(\sqrt{x}+1\right)-\sqrt{x}}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right]\)
\(:\left[\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+2+x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\right]\) \(:\left[\frac{\sqrt{x}+2}{\sqrt{x}+1}\right]\)
\(A=\left[\frac{\sqrt{x}+x-7-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right]:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\frac{\sqrt{x}+2}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
P = \(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
P = \(\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{x-2\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
P = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\)
Với \(x=6-2\sqrt{5}=5-2\sqrt{5}+1=\left(\sqrt{5}-1\right)^2\)
=> P = \(\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+1}{\sqrt{\left(\sqrt{5}-1\right)^2}-3}=\frac{\sqrt{5}-1+1}{\sqrt{5}-1-3}=\frac{\sqrt{5}}{\sqrt{5}-4}=\frac{\sqrt{5}\left(\sqrt{5}+4\right)}{\left(\sqrt{5}-4\right)\left(\sqrt{5}+4\right)}=\frac{5+4\sqrt{5}}{-11}\)