1.Kết quả của biểu thức(x-1)2+2(x-1)(5-x)+(5-x)2sau khi thu gọn là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

1.

\(\left(x-1\right)^2+2.\left(x-1\right).\left(5-x\right)+\left(5-x\right)^2\)

\(=[\left(x-1\right)+\left(5-x\right)]^2\)

\(=\left(x-1+5-x\right)^2\)

\(=16\)

2.

\(x^2-16+2.\left(x+4\right)\)

\(=\left(x^2-16\right)+2.\left(x+4\right)\)

\(=\left(x-4\right).\left(x+4\right)+2.\left(x+4\right)\)

\(=\left(x+4\right).\left(x-4+2\right)\)

\(=\left(x+4\right).\left(x-2\right)\)

3.

\(\left(x+3\right)^3\)

\(=x^3+3x^2.3+3x.3^2+3^3\)

\(=x^3+9x^2+27x+27\)

a) (x+1)(x+2)-x(x+2)=(x+2)(x+1-x)

=(x+2)

mk lm tp nè

b)(x+1)\(^2\)+(x+3)(x-3)=(x+1)\(^2\)-(x+3)(x+3)

=(x+1)\(^2\)-(x+3)\(^2\)

=(x+1+x+3)(x+1-x+3)

=(2x+4)4

14 tháng 8 2016

Đăng từng bài thôi bạn ơi

14 tháng 8 2016

cj on ruayf hả

14 tháng 8 2015

a/ \(=3y^2-6y-2x+1\)

b/ \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)

c/ \(=\left(2-x\right)^3\)

d/ \(=xy^2+x^2y+3xy+x^2y+x^3+3x^2-3xy-3x^2-9x\)

\(=xy\left(y+x+3\right)+x^2\left(y+x+3\right)-3x\left(y+x+3\right)\)

\(=\left(xy+x^2-3x\right)\left(y+x+3\right)=x\left(y+x-3\right)\left(y+x+3\right)\)

e/ \(=xy-x^2+2x-y^2+xy-2y\)

\(=x\left(y-x+2\right)-y\left(y-x+2\right)=\left(x-y\right)\left(y-x+2\right)\)

14 tháng 8 2015

a) =(2x+3y-1)2

b)=-(x-1)3

c)=-(x3-6x2+12x-8)=-(x-2)3

d)x3 + 2x2y + xy2 – 9x

    = x(x2 + 2xy + y2 -9)

    = x[(x2 + 2xy + y2) - 32]

    = x[(x + y)2 - 32]

    = x (x + y – 3)(x + y + 3)

e) 2x-2y-x2+2xy-y2=2(x-y)-(x-y)2=(x-y)(2-x+y)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

7 tháng 9 2018

áp dụng hết hằng đẳng thức nha dài quá mik ....ngại ghê sorry nhê

25 tháng 10 2018

Bài1: Phân tích các đa thức sau thành nhân tử

a)36-4x2+4xy-y2

\(=6^2-\left(4x^2-4xy+y^2\right)\)

\(=6^2-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b)2x4+3x2-5

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)

25 tháng 10 2018

B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)

\(=\left(6-2x+y\right)\left(6+2x-y\right)\)

c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)

d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)

e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)