K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 8 2020

1/

\(y=\frac{x^2+5}{x-3}\Rightarrow y'=\frac{2x\left(x-3\right)-\left(x^2+5\right)}{\left(x-3\right)^2}=\frac{x^2-6x-5}{\left(x-3\right)^2}< 0\) ; \(\forall x\in\left[3;6\right]\)

Hàm nghịch biến trên đoạn đã cho nên \(y_{min}=y\left(6\right)=\frac{41}{3}\)

2.

\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x+\frac{\pi}{3}\right)\)

\(\Rightarrow y'=2cos\left(x+\frac{\pi}{3}\right)=0\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)

\(\Rightarrow x=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{6}\)

\(y\left(0\right)=\sqrt{3}\) ; \(y\left(\pi\right)=-\sqrt{3}\) ; \(y\left(\frac{\pi}{6}\right)=2\) \(\Rightarrow y_{max}=y\left(\frac{\pi}{6}\right)=2\)

3.

ĐKXĐ: \(x\le1\)

Đặt \(\sqrt{1-x}=t\ge0\Rightarrow x=1-t^2\)

Pt trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)

Xét \(f\left(t\right)=-t^2+t+1\Rightarrow f'\left(t\right)=-2t+1=0\Rightarrow t=\frac{1}{2}\)

\(f\left(\frac{1}{2}\right)=\frac{11}{8}\Rightarrow f\left(t\right)\le\frac{11}{8}\Rightarrow m\le\frac{11}{8}\)

NV
1 tháng 8 2020

1. Không rõ đề

2.

\(y'=\sqrt{x^2+3}+\frac{x\left(x-6\right)}{\sqrt{x^2+3}}=\frac{2x^2-6x+3}{\sqrt{x^2+3}}< 0;\forall x\in\left[1;2\right]\)

\(\Rightarrow\) Hàm nghịch biến trên \(\left[1;2\right]\Rightarrow y_{max}=y\left(1\right)=-10\)

3.

\(y'=3x^2-4mx=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\frac{4m}{3}\end{matrix}\right.\)

Ta có: \(y\left(1\right)=3-3m\) ; \(y\left(3\right)=29-19m\)

TH1: \(\frac{4m}{3}\le1\Rightarrow m\le\frac{3}{4}\) khi đó hàm đồng biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(3\right)\)

\(\Rightarrow29-19m=6\Leftrightarrow m=\frac{23}{19}>\frac{3}{4}\left(ktm\right)\)

TH2: \(\frac{4m}{3}\ge3\Rightarrow m\ge\frac{9}{4}\)

Khi đó hàm nghịch biến trên \(\left[1;3\right]\Rightarrow y_{max}=y\left(1\right)\)

\(\Rightarrow3-3m=6\Rightarrow m=-1< \frac{9}{4}\left(ktm\right)\)

TH3: \(1< \frac{4m}{3}< 3\Rightarrow\frac{3}{4}< m< \frac{9}{4}\)

Hàm nghịch biến trên \(\left(1;\frac{4m}{3}\right)\) và đồng biến trên \(\left(\frac{4m}{3};3\right)\)

\(\Rightarrow\) Hàm đạt GTLN tại \(x=1\) hoặc \(x=3\)

\(y\left(1\right)=3-3m=6\Rightarrow m=-1\notin\left(\frac{3}{4};\frac{9}{4}\right)\) (loại)

\(y\left(3\right)=29-19m=6\Rightarrow m=\frac{23}{19}\in\left(\frac{3}{4};\frac{9}{4}\right)\)

Vậy \(m=\frac{23}{19}\)

NV
4 tháng 8 2021

Đặt \(g\left(x\right)=-x^4+8x^2+m\Rightarrow g'\left(x\right)=-4x^3+16x\)

\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

\(f\left(-1\right)=\left|m+7\right|\) ; \(f\left(0\right)=\left|m\right|\) ; \(f\left(2\right)=\left|m+16\right|\) ; \(f\left(3\right)=\left|m-9\right|\)

\(\Rightarrow max\left\{f\left(x\right)\right\}=max\left\{\left|m-9\right|;\left|m+16\right|\right\}\) 

TH1: \(\left\{{}\begin{matrix}\left|m+16\right|\ge\left|m-9\right|\\\left|m+16\right|=2018\end{matrix}\right.\) \(\Rightarrow m=2002\)

TH2: \(\left\{{}\begin{matrix}\left|m+16\right|\le\left|m-9\right|\\\left|m-9\right|=2018\end{matrix}\right.\) \(\Rightarrow m=-2027\)

Có 2 giá trị của m

27 tháng 6 2021

1, y' = \(\dfrac{m^2-9}{\left(3x-m\right)^2}\)

ycbt <=> \(\left\{{}\begin{matrix}m^2-9< 0\\\dfrac{m}{-3}\ne x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3< m< 3\\m\ge0\end{matrix}\right.\)

\(\Leftrightarrow0\le m\le3\)

27 tháng 6 2021

bài 2,3 đợi mình tí, gõ máy mất thời gian quá nếu mà được thì tối mình chụp lại cho

DD
11 tháng 8 2021

\(y=-\frac{x^3}{3}+2x^2-mx+1\)

\(y'=-x^2+4x-m\)

Để hàm số luôn nghịch biến trên \(ℝ\)thì \(y'\le0\)với mọi \(x\inℝ\).

Suy ra \(-x^2+4x-m\le0\)với mọi \(x\inℝ\).

\(\Leftrightarrow\hept{\begin{cases}-1< 0\\\Delta'\le0\end{cases}}\Leftrightarrow4+m\le0\Leftrightarrow m\le-4\).

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)