Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)
\(\Leftrightarrow\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)
\(\Leftrightarrow\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)
\(\Leftrightarrow2abc+a^2+b^2+ab=abc^2\)
\(\Leftrightarrow\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)
\(\Leftrightarrow\left(a+b\right)^2=ab\left(c-1\right)^2\)
\(\Rightarrow ab>0\) , ab là bình phương của số hữu tỉ
\(\Rightarrow c-1=\frac{a+b}{\sqrt{ab}}\)
\(\Rightarrow c+1=\frac{a+b}{\sqrt{ab}}+2=\left(\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}\right)^2\)
Khi đó : \(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\) là số hữu tỉ do ab là bình phương của số hữu tỉ
\(\Rightarrow\frac{c-3}{c+1}\) là bình phương của số hữu tỉ ( đpcm )
Ta có: ab2+bc2+ca2=a2c+b2a+c2bab2+bc2+ca2=a2c+b2a+c2b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b
⇔a3c2+b3a2+c3b2=b3c+c3a+a3b ( Do a2b2c2=abc=1)
⇔ a3c2+b3a2+c3b2 -b3c-c3a-a3b+a2b2c2-abc=0( Do a2b2c2=abc=1)
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
⇔(a2b2c2−a3c2)−(b3a2−a3b)−(c3b2−c3a)+(b3c−abc)=0
Tự phân tích thành nhân tử nhá: ⇔(b2−a)(c2−b)(a2−c)=0⇔(b2−a)(c2−b)(a2−c)=0
Đến đây suy ra ĐPCM
Đặt \(\left(\frac{a}{b^2},\frac{b}{c^2},\frac{c}{a^2}\right)=\left(x,y,z\right)\)
\(\Rightarrow xyz=\frac{abc}{a^2b^2c^2}=\frac{1}{abc}=1\)
Theo bài ra ta có : \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
\(\Leftrightarrow x+y+z=xy+yz+xz\)
\(\Leftrightarrow\left(xy-x-y+1\right)-1+z\left(x+y-1\right)=0\)
\(\Leftrightarrow\left(xy-x-y+1\right)+z\left(x+y-1-xy\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)-z\left(x-1\right)\left(y-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(y-1\right)\left(1-z\right)=0\)
\(\Leftrightarrow\frac{a-b^2}{b^2}.\frac{b-c^2}{c^2}.\frac{a^2-c}{a^2}=0\)
\(\Leftrightarrow\left(a-b^2\right)\left(b-c^2\right)\left(c-a^2\right)=0\)
Ta có đpcm
Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Câu 1:ĐkXĐ \(x\ge-\frac{1}{4}\)
\(\left(2\sqrt{x+2}-\sqrt{4x+1}\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\)(theo đề ở dưới)
Nhân liên hợp ta có
\(\left(4\left(x+2\right)-4x-1\right)\left(2x+3+\sqrt{4x^2+9x+2}\right)=7\left(2\sqrt{x+2}+\sqrt{4x+1}\right)\)<=>\(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)(1)
Đặt \(2\sqrt{x+2}+\sqrt{4x+1}=t\left(t\ge0\right)\)
=> \(t^2=8x+9+4\sqrt{4x^2+9x+2}\)
=> \(\frac{t^2-8x-9}{4}=\sqrt{4x^2+9x+2}\)
Khi đó (1)
<=> \(2x+3+\frac{t^2-8x-9}{4}=t\)
<=> \(\frac{3}{4}+\frac{t^2}{4}=t\)
=> \(\left[{}\begin{matrix}t=1\\t=3\end{matrix}\right.\)(tm)
+ \(t=1\) => \(\sqrt{4x^2+9x+2}=-2x-2\)
Mà \(x\ge-\frac{1}{4}\)
=> pt vô nghiệm
+ t=3 => \(\sqrt{4x^2+9x+2}=-2x\)
=> \(\left\{{}\begin{matrix}x\le0\\9x+2=0\end{matrix}\right.\)
=> \(x=-\frac{2}{9}\)(tmĐKXĐ)
Vậy x=-2/9
Câu 3:
\(\frac{1}{a+bc}+\frac{1}{b+ac}=\frac{1}{a+b}\)
<=> \(\frac{\left(a+b\right)\left(c+1\right)}{\left(a+bc\right)\left(b+ac\right)}=\frac{1}{a+b}\)
<=> \(\left(a+b\right)^2\left(c+1\right)=ab\left(c^2+1\right)+c\left(a^2+b^2\right)\)
<=> \(2abc+a^2+b^2+ab=abc^2\)
<=> \(\left(a^2+b^2+2ba\right)=ab\left(c^2-2c+1\right)\)
<=> \(\left(a+b\right)^2=ab\left(c-1\right)^2\)
=> ab>0 , ab là bình phương của số hữu tỉ
=> \(c-1=\frac{a+b}{\sqrt{ab}}\)
=> \(c+1=\frac{a+b}{\sqrt{ab}}+2=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\sqrt{ab}}\)
Khi đó
\(\frac{c-3}{c+1}=1-\frac{4}{c+1}=1-\frac{4\sqrt{ab}}{\left(\sqrt{a}+\sqrt{b}\right)^2}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)
Mà \(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{a-b}=\frac{a+b-2\sqrt{ab}}{a-b}\)là số hữu tỉ do ab là bình phương của số hữu tỉ
=> \(\frac{c-3}{c+1}\)là bình phương của số hữu tỉ(ĐPCM)
3)
Ta có : \(a^2+1=a^2+ab+bc+ca\)
\(=a.\left(a+b\right)+c.\left(a+b\right)\)
\(=\left(a+b\right)\left(a+c\right)\)
Tương tự ta có : \(b^2+1=\left(b+a\right)\left(b+c\right)\)
\(c^2+1=\left(c+a\right)\left(c+b\right)\)
Khi đó :
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)
\(=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\) là một số hữu tỉ với a,b,c hữu tỉ.
(mò được ở trên câu hỏi của ông)
Khó nhỉ.