Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-8m+4-4m^2+12m=4m+4\)
Để phương trình có nghiệm thì 4m+4>=0
hay m>=-1
+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm
a=0 va b=0 thi phuong trình có vô sô nghiệm
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn)
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0
<=> x(m^2-3m+2)-m^2+m=0 (2)
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất
x=m-m^2/m^2-3m+2 <=> x=m/m-2
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm
a: \(m^2x-m=4x-2\)
\(\Leftrightarrow m^2x-4x=m-2\)
\(\Leftrightarrow x\left(m-2\right)\left(m+2\right)=m-2\)
Để phương trình có vô số nghiệm thì m-2=0
hay m=2
b: \(m^2\left(x-1\right)=9x+m-6\)
\(\Leftrightarrow m^2x-9x=m^2+m-6\)
\(\Leftrightarrow x\left(m-3\right)\left(m+3\right)=\left(m+3\right)\left(m-2\right)\)
Để phương trình có vô số nghiệm thì m+3=0
hay m=-3
1,
a, với m=1 , phương trình có nghiệm x=\(\frac{1}{2}\)
với m\(\ne1\) , \(_{\Delta}\)=m
- nếu m< 0 : pt vô nghiệm
-nếu m=0: pt có 1 nghiệm kép x=1
-nếu m>0( và m\(\ne\)1) : pt có 2 nghiệm
\(x_1=\frac{-1-\sqrt{m}}{m-1}\) và \(x_2=\frac{-1+\sqrt{m}}{m-1}\)
b, pt có 2 nghiệm trái dấu nếu
m-1\(\ne\)0 và \(\frac{-1}{m-1}\)<0 \(\Leftrightarrow\)m>1
c, \(m\ne1\) và m>0, pt có 2 nghiệm x1 và x2
1=x12 +x22=(x1+x2)2-2x1x2=\(\left(\frac{2}{m-1}\right)^2+\frac{2}{m-1}\Rightarrow m=2+\sqrt{5}\)
2,
giả sử 2 pt đều có nghiệm thì phải có:
\(\Delta_1=1-4a\ge0\) và \(\Delta_2=a^2-4\ge0\Leftrightarrow a\le-2\)
giả sử k là 1 nghiệm chung thì ta phải có:
k2+k+a=k2+ka+1
\(\Rightarrow\) k(a-1)=a-1 \(\Rightarrow\)k=1 (vì \(a\le-2\) nên a-1\(\ne\)0)
thay k=1 vào 1 pt ta tính được a=-2
thử lại: a=-2 vào các pt ta thấy dúng là 2 pt có nghiệm chung là x=1
Bài 1:
\(\Leftrightarrow x\left(m^2-m-2\right)=m^2-1\)
\(\Leftrightarrow x\left(m-2\right)\left(m+1\right)=\left(m-1\right)\left(m+1\right)\)
Để phương trình vô nghiệm thì m-2=0
hay m=2
Để phương trình có nghiệm duy nhất thì (m-2)(m+1)<>0
hay \(m\notin\left\{2;-1\right\}\)
Để phương trình có vô số nghiệm thì m+1=0
hay m=-1