K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

|x1|=3|x2|

=>|2m+2-x2|=|3x2|

=>4x2=2m+2 hoặc -2x2=2m+2

=>x2=1/2m+1/2 hoặc x2=-m-1

Th1: x2=1/2m+1/2

=>x1=2m+2-1/2m-1/2=3/2m+3/2

x1*x2=m^2+2m

=>1/2(m+1)*3/2(m+1)=m^2+2m

=>3/4m^2+3/2m+3/4-m^2-2m=0

=>m=1 hoặc m=-3

TH2: x2=-m-1 và x1=2m+2+m+1=3m+3

x1x2=m^2+2m

=>-3m^2-6m-3-m^2-2m=0

=>m=-1/2; m=-3/2

4 tháng 3 2018

có \(\Delta'=\left[-\left(m-1\right)\right]^2-m^2+m+5\)

\(\Delta'=m^2-2m+1-m^2+m+5\)

\(\Delta'=-m+6\)

để pt (1) có 2 nghiệm \(x_1;x_2\) \(\Leftrightarrow-m+6>0\)

\(\Leftrightarrow m< 6\)

theo định lí \(Vi-et\) \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1.x_2=m^2-m-5\end{cases}}\)

theo bài ra \(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{10}{3}=0\)

\(\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}+\frac{10}{3}=0\)   ( \(x_1.x_2\ne0\Leftrightarrow m^2-m-5\ne0\))

\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{-10}{3}\)

\(\Leftrightarrow\frac{\left(2m-2\right)^2-2.\left(m^2-m-5\right)}{m^2-m-5}=-\frac{10}{3}\)

\(\Leftrightarrow\frac{4m^2-8m+4-2m^2+2m+10}{m^2-m-5}=\frac{-10}{3}\)

\(\Leftrightarrow\left(2m^2-6m+14\right).3=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow6.\left(m^2-3m+7\right)=-10.\left(m^2-m-5\right)\)

\(\Leftrightarrow-3m^2+9m-21=5m^2-5m-25\)

\(\Leftrightarrow-3m^2+9m-21-5m^2+5m+25=0\)

\(\Leftrightarrow-8m^2+14m+4=0\)

\(\Leftrightarrow4m^2-7m-2=0\)  \(\left(2\right)\)

từ PT (2) có \(\Delta=\left(-7\right)^2-4.4.\left(-2\right)=49+32=81>0\Rightarrow\sqrt{\Delta}=9\)

vì \(\Delta>0\) nên PT có 2 nghiệm phân biệt 

\(m_1=\frac{7-9}{8}=\frac{-1}{4}\)  ( TM ĐK 

\(m_2=\frac{7+9}{8}=2\)                                  \(m< 6\)và \(m^2-m-5\ne0\)

4 tháng 3 2018

Bài này bạn áp dụng vi-ét là ra ngay nha !

Chúc bạn học tốt !

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0

a: Thay m=4 vào phương trình, ta được:

\(x^2-4x+4-1=0\)

=>\(x^2-4x+3=0\)

=>(x-1)(x-3)=0

=>\(\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b: \(\text{Δ}=\left(-4\right)^2-4\cdot1\left(m-1\right)\)

\(=16-4m+4=-4m+20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>-4m+20>0

=>-4m>-20

=>\(m< 5\)

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-\dfrac{\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

\(x_1\left(x_1+2\right)+x_2\left(x_2+2\right)=20\)

=>\(\left(x_1^2+x_2^2\right)+2\left(x_1+x_2\right)=20\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=20\)

=>\(4^2-2\cdot\left(m-1\right)+2\cdot4=20\)

=>-2(m-1)+24=20

=>-2(m-1)=-4

=>m-1=2

=>m=3(nhận)

17 tháng 6 2022

ko biết làm

14 tháng 3 2019

Tìm max chứ nhể ???

Có : \(\Delta'=m^2+m\)

Pt có 2 nghiệm  p/b thì \(\Delta'=m^2+m>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>0\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m\end{cases}}\)

Vì x1; x2 là nghiệm của pt nên \(\hept{\begin{cases}x_1^2-2mx_1-m=0\\x_2^2-2mx_2-m=0\end{cases}}\)

                                    \(\Rightarrow\hept{\begin{cases}2mx_1=x_1^2-m\\2mx_2=x_2^2-m\end{cases}}\)

Ta có : \(T=\frac{1}{x_1^2+2mx_2+11\left(m+1\right)}+\frac{1}{x_2^2+2mx_1+11\left(m+1\right)}\)

             \(=\frac{1}{x_1^2+x_2^2-m+11m+11}+\frac{1}{x_2^2+x_1^2-m+11m+11}\)

             \(=\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}+\frac{1}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{\left(x_1+x_2\right)^2-2x_1x_2+10m+11}\)

             \(=\frac{2}{4m^2+2m+10m+11}\)

            \(=\frac{2}{4m^2+12m+11}\)

            \(=\frac{2}{\left(4m^2+12m+9\right)+2}\)

           \(=\frac{2}{\left(2m+3\right)^2+2}\le\frac{2}{2}=1\)

Dấu "=" khi m = -3/2 (thỏa mãn)

a: \(x^2-x-3m-2=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-3m-2\right)\)

\(=1+12m+8=12m+9\)

Để phương trình có nghiệm kép thì Δ=0

=>12m+9=0

=>12m=-9

=>\(m=-\dfrac{3}{4}\)

Thay m=-3/4 vào phương trình, ta được:

\(x^2-x-3\cdot\dfrac{-3}{4}-2=0\)

=>\(x^2-x+\dfrac{1}{4}=0\)

=>\(\left(x-\dfrac{1}{2}\right)^2=0\)

=>\(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left(-1\right)}{1}=1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-3m-2}{1}=-3m-2\end{matrix}\right.\)

\(\left(x_1+x_2\right)^2-3x_1x_2\)

\(=1^2-3\left(-3m-2\right)\)

\(=1+9m+6=9m+7\)

c: \(\left(x_1+x_2\right)^2=1^2=1\)

d: \(\left(x_1\right)^2\cdot\left(x_2\right)^2=\left[x_1x_2\right]^2\)

\(=\left(-3m-2\right)^2\)

\(=9m^2+12m+4\)

18 tháng 5 2022

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=\left(m+1\right)^2+32>0\left(\text{đúng }\forall m\right)\)

Theo Vi-ét: \(\begin{cases} x_1+x_2=-2(m+1)=-2m-2\\ x_1x_2=-8 \end{cases}\)

Vì $x_1$ là nghiệm của PT nên  \(x_1^2=-2(m+1)x_1+8\)

Ta có \(x_1^2=x_2\)

\(\Leftrightarrow-2\left(m+1\right)x_1+8=x_2\\ \Leftrightarrow x_2+2mx_1+2x_1-8=0\\ \Leftrightarrow\left(x_1+x_2\right)+2mx_1+x_1-8=0\\ \Leftrightarrow x_1\left(2m+1\right)-2m-10=0\\ \Leftrightarrow x_1=\dfrac{2m+10}{2m+1}\)

Mà \(x_1+x_2=-2m-2\Leftrightarrow x_2=-2m-2-\dfrac{2m+10}{2m+1}=\dfrac{-4m^2-8m-12}{2m+1}\)

Ta có \(x_1x_2=-8\)

\(\Leftrightarrow\dfrac{2m+10}{2m+1}\cdot\dfrac{-4m^2-8m-12}{2m+1}=-8\\ \Leftrightarrow\left(2m+10\right)\left(m^2+2m+3\right)=2\left(2m+1\right)^2\\ \Leftrightarrow m^3+3m^2+9m+14=0\\ \Leftrightarrow m^3+2m^2+m^2+2m+7m+14=0\\ \Leftrightarrow\left(m+2\right)\left(m^2+m+7\right)=0\\ \Rightarrow m=-2\)

Vậy $m=-2$

NV
19 tháng 8 2021

\(\Delta=1-4m>0\Rightarrow m< \dfrac{1}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=m\end{matrix}\right.\)

\(\left(x_1^2+x_2+m\right)\left(x_2^2+x_1+m\right)=m^2-m-1\)

\(\Leftrightarrow\left[x_1\left(x_1+x_2\right)-x_1x_2+x_2+m\right]\left[x_2\left(x_1+x_2\right)-x_1x_2+x_1+m\right]=m^2-m-1\)

\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1+x_2\right)=m^2-m-1\)

\(\Leftrightarrow m^2-m-1=1\)

\(\Leftrightarrow m^2-m-2=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2>\dfrac{1}{4}\left(loại\right)\end{matrix}\right.\)