K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2021

`|x-2|=2x-3(x>=3/2)`

`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\) 

`<=>x=5/3(Tm(`

`2)A=-x^2+2x+9`

`=-(x^2-2x)+9`

`=-(x^2-2x+1)+1+9`

`=-(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1.`

15 tháng 7 2021

1,

\(|x-2|=x-2< =>x\ge2\)

\(=>x-2=2x-3< =>x=1\left(ktm\right)\)

*\(\left|x-2\right|=2-x< =>x< 2\)

\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)

vậy x=5/3

2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)

\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)

dấu"=" xảy ra<=>x=1

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

\(a)\)

\(\frac{1}{x+1}-\frac{x-1}{x}=\frac{3x+1}{x\left(x+1\right)}\)

\(\Leftrightarrow x-x^2+1=3x+1\)

\(\Leftrightarrow x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b)\)

\(\frac{\left(x+2\right)^2}{2x-3}-\frac{1}{1}=\frac{x^2+10}{2x-3}\)

\(\Leftrightarrow x^2+4x+4-2x-3=x^2+10\)

\(\Leftrightarrow x^2+2x+1=x^2+10\)

\(\Leftrightarrow2x-9=0\)

\(\Leftrightarrow2x=9\)

\(\Leftrightarrow x=\frac{2}{9}\)

21 tháng 12 2018

chịu rồi bạn ạ

21 tháng 12 2018

\(Taco:\)

\(A=2\left(3x+1\right)\left(x-1\right)-3\left(2x-3\right)\left(x-4\right)\)

\(A=\left(6x+2\right)\left(x-1\right)-\left(6x-9\right)\left(x-4\right)\)

\(A=\left(6x^2-4x-2\right)-\left(6x^2-24x-9x-36\right)\)

\(A=6x^2-4x-2-6x^2+33x+36=29x+34\)

\(b,x=2\Rightarrow A=58+34=92\)

\(A=-20\Leftrightarrow29x=-20-34=-54\Leftrightarrow x=\frac{-54}{29}\)

\(x^2\ge0.\Rightarrow A+x^2=x\left(x+29\right)+34\ge-176,25\)

Dấu "=" xảy ra khi: x(x+29) đạtGTNN

<=> x=-14,5

21 tháng 6 2017

b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18

4x 2 -4x+1-4x 2+25=18

26-4x=18

4x=8

x=2

21 tháng 6 2017

a,27x-18=2x-3x^2

<=> 3x^2-2x+27-18x=0

<=> 3x^2-20x+27=0

\(\Delta\)= 20^2-4-12.27

tính \(\Delta\)rồi tìm x1 ,x2

2 tháng 8 2017

Ta có

4x-8=9x-3-2x+1

<=>-6=-3x(chuyển vế đổi dấu)

<=>x=2

b)

Ta có

Căn cả 2 vế ta đcx-5/ cawn3 =3 

<=>x=10.2

6 tháng 5 2020

\(A=\left[\frac{6x^2}{x^3-1}-\frac{2x-2}{x^2+x+1}-\frac{1}{x-1}\right]:\frac{x^2+9}{\left(x-1\right)\left(9-4x\right)}\)

\(=\left[\frac{6x^2}{x^3-1}-\frac{\left(2x-2\right)\left(x-1\right)}{\left(x^2+x+1\right)\left(x-1\right)}-\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right]\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{6x^2-\left(2x^2-4x+2\right)-x^2-x-1}{\left(x^2+x+1\right)\left(x-1\right)}\cdot\frac{\left(x-1\right)\left(9-4x\right)}{x^2+9}\)

\(=\frac{5x^2-2x^2+4x-2-x-1}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

\(=\frac{3x^2+3x-3}{\left(x^2+x+1\right)}\cdot\frac{\left(9-4x\right)}{x^2+9}\)

Biểu thức A bạn viết đúng chưa?

23 tháng 12 2017

Ta có : x2(x - 1)2 + x(x2 - 1) = 2(x + 1)2

<=> x2(x2 - 2x + 1) + x3 - x - 2(x2 + 2x + 1) = 0

<=> x4 - 2x3 + x2 + x3 - x - 2x2 - 4x - 2 = 0

<=> x4 - x3 - x2 - 5x - 2 = 0 

26 tháng 2 2019

a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)

\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)

\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)

\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)

b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)

c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)

\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)