Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có số a chia 7 dư 3 , tức là \(a=7k+3\left(k\in N\right)\)
\(\Rightarrow a^2=\left(7k+3\right)^2=\left(7k\right)^2+3^2+2.7.3k=7\left(7k^2+6k+1\right)+2=7Q+2\)
Vậy a2 chia 7 dư 2
ta có a:7 dư 3 nên a sẽ có dạng tổng quát là a=7k+3 \(\left(k\in N\right)\)
\(\Rightarrow\)a2=(7k+3)2=(7k)2+2.7k.3+7+2=7(7k2+6k+1)+2 ( có dạng B.Q+R)
vậy nên a2:7 dư 2
b) nếu a chia cho 11 dư 4 thì a = 15 => a^2=15^2=225 <=> a^2:11=225:11=20 dư 5
a)
a chia cho 7 dư 3 nên a có dạng 7k+3 (k thuộc Z)
Ta có:
\(a^2=\left(7k+3\right)^2=49k^2+42k+9\)'
\(=7\left(7k^2+6k+1\right)+2\)chia cho 7 dư 2
Vậy nếu a chia cho 7 dư 3 thì a^2 chia cho 7 dư 2
b)
a chia cho 11 dư 4 nên a có dạng 11k+4 (k thuộc Z)
Ta có:
\(a^2=\left(11k+4\right)^2=121k^2+88k+16\)'
\(=11\left(11k^2+8k+1\right)+5\)chia cho 11 dư 5
Vậy nếu a chia cho 11 dư 4 thì a^2 chia cho 11 dư 5
a.Ta có a /4 dư 2 là 6
b/4 dư 1 là 5
Vậy a*b=6*5=30 chia 4 dư 2
b.Giã sử đặt a là 1 ta co a^2 =1, 1/4=0 dư 1 thế các số lẻ khác thì kết quả luôn luôn dư 1
c.cá số chẳn khi bình phương đều chia hết chõ vì thế các số lẻ bình phương mới không chia hết cho 4 vì thế các số dư luôn luôn 1
a) Vì a chia 4 dư 2 nên a = 4k + 2
b chia 4 dư 1 nên b = 4t + 1
a.b = ( 4k + 2 )( 4t + 1 ) = 16kt + 4k + 8t + 2 chia 4 dư 2
Vậy ab chia 4 dư 2
b) Vì a là số lẻ nên a = 2k + 1
a² = ( 2k + 1)( 2k + 1 ) = 4k² + 4k + 1 chia 4 dư 1
Vậy a² chia 4 dư 1
c) Vì a² là số chính phương ( a là số tự nhiên )
suy ra a² chia 4 dư 0 hoặc 1
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
n = 7k + 4
=> n2 = 49k + 16
Mà : 49k chia hết cho 7; 16 chia 7 dư 2
<=> 49k + 16 chia 7 dư 2
Vậy: n2 chia 7 dư 2
=> n3 = 343k + 64
Mà : 343k chia hết cho 7; 64 chia 7 dư 1
=> 343k + 64 chia 7 dư 1
Vậy n3 chia 7 dư 1
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
n chia 7 dư 4 thì n có dạng \(7k+4\)
Ta có:
\(n^2=\left(7k+4\right)^2=49k^2+56k+14+2\) chia 7 dư 2
\(n^3=\left(7k+3\right)^3=343k^3+147k^2+189k+21+6\) chia 7 dư 6
câu 1 sai đề bạn ạ
câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11
1.Đề sai
2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N
Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)
Do đó \(a^2\) chia 11 dư 5