Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=k\)
\(\Rightarrow\hept{\begin{cases}x^2+y^2=10k\left(1\right)\\x^2-2y^2=7k\left(2\right)\end{cases}}\)
Từ 2 ta có :
x2 = 7k + 2y2
Thay ngược vào (1) , ta lại có :
7k + 2y2 + y2 = 10k
=> y2 = k
<=> x2 = 9k
Thay x2 , y2 vào biểu thức x4.y4 = 81
=> 81k2 . k2 = 81
=> k4 = 1
=> k = 1 hoặc = -1
Với k = 1 thì x = 3 hoặc -3
và y = 1 hoặc -1
Với k = -1 thì x,y không có giá trị thõa mãn
Đặt x2+y210 =x2−2y27 =k
⇒{
x2+y2=10k(1) |
x2−2y2=7k(2) |
Từ 2 ta có :
x2 = 7k + 2y2
Thay ngược vào (1) , ta lại có :
7k + 2y2 + y2 = 10k
=> y2 = k
<=> x2 = 9k
Thay x2 , y2 vào biểu thức x4.y4 = 81
=> 81k2 . k2 = 81
=> k4 = 1
=> k = 1 hoặc = -1
Với k = 1 thì x = 3 hoặc -3
và y = 1 hoặc -1
Với k = -1 thì x,y không có giá trị thõa mãn
Ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\)
\(\Leftrightarrow7x^2+7y^2=10x^2-20y^2\)
\(\Leftrightarrow27y^2=3x^2\)
\(\Leftrightarrow9y^2=x^2\)
\(\Leftrightarrow81y^4=x^4\)
Ta lại có: \(x^4y^4=81\)
\(\Rightarrow81y^4.y^4=81\)
\(\Leftrightarrow y^8=1\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)
\(y=\pm1\Rightarrow x^2=9y^2=9\)
\(\Rightarrow x=\pm3\)
Pt có nghiệm \(\left(x,y\right)=\left\{\left(3;1\right);\left(-3;1\right);\left(3;-1\right);\left(-3;-1\right)\right\}\)
Ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}.\)
Đặt \(\left\{{}\begin{matrix}x^2=a\left(a\ge0\right)\\y^2=b\left(b\ge0\right)\end{matrix}\right.\)
\(\Rightarrow\frac{a+b}{10}=\frac{a-2b}{7}\) và \(a^2.b^2=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{a+b-\left(a-2b\right)}{10-7}=\frac{a+b-a+2b}{3}=\frac{3b}{3}=b\) (1).
\(\frac{a+b}{10}=\frac{2a+2b}{20}=\frac{a-2b}{7}=\frac{2a+2b+a-2b}{20+7}=\frac{3a}{27}=\frac{a}{9}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a}{9}=b.\)
\(\Rightarrow a=9b.\)
Vì \(a^2.b^2=81\)
\(\Rightarrow\left(9b\right)^2.b^2=81\)
\(\Rightarrow81b^2.b^2=81\)
\(\Rightarrow81.b^4=81\)
\(\Rightarrow b^4=81:81\)
\(\Rightarrow b^4=1\)
\(\Rightarrow b=1\) (vì \(b\ge0\)).
Mà \(a=9b\)
\(\Rightarrow a=9.1\)
\(\Rightarrow a=9.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=9\\y^2=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(3;1\right),\left(-3;-1\right).\)
Chúc bạn học tốt!
Áp dụng t/c của dãy tỉ số bằng nhau ta có: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}=\frac{x^2+y^2-\left(x^2-2y^2\right)}{10-7}=\frac{3y^2}{3}=y^2\)
=> x2 + y2 = 10y2 => x2 = 9y2 => x4 = 81y4
Thay vào x4.y4 = 81y4.y4 = 81y8 = 81 => y8 = 1 => y = 1 hoặc y = - 1
=> x2 = 9 => x = 3 hoặc x = - 3
Vậy (x;y) = (3;1) ; (3;-1); (-3;1) ;(-3;-1)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Nhân chéo ta được x^2=9y^2, thay vào biểu thức còn lại là tìm được x và y.
\(\frac{x^2+y^2}{10}=\frac{x^2+2y}{7}\)
\(\Leftrightarrow7\left(x^2+y^2\right)=10\left(x^2-2y^2\right)\)
\(\Leftrightarrow-3x^2+27y^2=0\)
\(\Leftrightarrow-x^2+9y^2=0\)
\(\Leftrightarrow x^2=9y^2\)
\(x^4.y^4=81\Leftrightarrow x^2.y^2=9\Leftrightarrow9y^2.y^2=9\Leftrightarrow y^4=1\)
\(\Rightarrow y=\pm1=>x=\pm1\)
Vậy \(\left(x;y\right)=\left(1,1\right);\left(1;-1\right);\left(-1;-1\right);\left(-1;1\right)\)
Tớ biết cách làm rồi. Đây là lời giải các bạn tham khảo nhé !
Đặt x ^ 2 = a ( a \(\ge\) 0), y = b (b \(\ge\) 0).
Ta có : \(\frac{a+b}{10}=\frac{a-2b}{7}\) và a ^ 2.b ^ 2 = 81.
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{\left(a+b\right)-\left(a-2b\right)}{10-7}=\frac{3b}{3}=b\left(1\right)\)
\(\frac{a+b}{10}=\frac{a-2b}{7}=\frac{2a+2b}{20}=\frac{\left(2a+2b\right)+\left(a-2b\right)}{20+7}=\frac{3a}{27}=\frac{a}{9}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{a}{9}=b\Rightarrow a=9b\)
Do a ^ 2.b ^ 2 = 81 nên (9b) ^ 2.b ^ 2 = 81\(\Rightarrow81b^4=81\Rightarrow b^4=1\Rightarrow b=1\)( vì b\(\ge\) 0)
Suy ra a = 9.1 = 9
Ta có x ^ 2 = 9 và y ^ 2 = 1
Suy ra : x = \(\pm\) 3, y = \(\pm\) 1
Vậy x = 3 thì y = 1
hoặc x = -3 thì y =1
ai chỉ bn z