Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(a^{2000}+b^{2000}=a^{2001}+b^{2001}\)
\(\Rightarrow a^{2001}+b^{2001}\)\(-a^{2000}-b^{2000}=0\)
\(\Rightarrow a^{2000}\left(a-1\right)+b^{2000}\left(b-1\right)=0\)(1)
và \(a^{2001}+b^{2001}=a^{2002}+b^{2002}\)
\(\Rightarrow a^{2002}+b^{2002}\)\(-a^{2001}-b^{2001}=0\)
\(\Rightarrow a^{2001}\left(a-1\right)+b^{2001}\left(b-1\right)=0\)(2)
Lấy (2) - (1), ta được: \(a^{2000}\left(a-1\right)^2+b^{2000}\left(b-1\right)^2=0\)(3)
Mà \(a^{2000}\left(a-1\right)^2\ge0\forall a\)và \(b^{2000}\left(b-1\right)^2\ge0\forall b\)
nên (3) xảy ra\(\Leftrightarrow\hept{\begin{cases}a^{2000}\left(a-1\right)^2=0\\b^{2000}\left(b-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1hoaca=0\\b=1hoacb=0\end{cases}}\)
Mà a,b dương nên a = 1 và b = 1
a) Áp dụng BĐT Svac - xơ:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)
(Dấu "="\(\Leftrightarrow a=b=c=\frac{1}{3}\))
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)
Dấu " = " xảy ra < = > a=b=c
Ta có : \(a^2+\frac{1}{9}\ge\frac{2}{3}a\)
Suy ra
\(VT\le\Sigma\left(\frac{a}{\left(a^2+1\right)}\right)\le\Sigma\frac{a}{\frac{2}{3}a+\frac{8}{9}}=\Sigma\frac{9a}{6a+8}=\frac{9}{2}-\Sigma\frac{6}{4+3a}\le\frac{9}{2}-\frac{54}{12+3\left(a+b+c\right)}=\frac{9}{10}\)
Đẳng thức xảy ra <=> \(a=b=c=\frac{1}{3}\)
Cách khác nhá.
Lời giải
Ta sẽ c/m:\(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow\frac{a}{a^2+1}-\frac{18}{25}a-\frac{3}{50}\le0\)
Thật vậy:\(VT=\frac{-\left(4a+3\right)\left(3a-1\right)^2}{50\left(a^2+1\right)}\le0\forall x\)
Vậy \(\frac{a}{a^2+1}\le\frac{18}{25}a+\frac{3}{50}\).Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(VT\le\frac{18}{25}\left(a+b+c\right)+\frac{9}{50}=\frac{9}{10}^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\))\(=\)\(1+\frac{a}{b}\)\(+\)\(\frac{a}{c}\)\(+1\)\(\frac{b}{c}\)\(+\)\(\frac{b}{a}\)\(+1\)\(+\frac{c}{b}\)\(+\frac{c}{a}\)
\(=\)\(3\)\(+\)(\(\frac{a}{b}\)\(+\frac{b}{a}\))\(+\)\(\frac{c}{b}\)\(+\)\(\frac{b}{c}\))\(+\)(\(\frac{a}{c}\)\(+\)\(\frac{c}{a}\))
\(mà\)\(\frac{a}{b}\)\(+ \)\(\frac{b}{a}\)\(>=2\)\(;\)\(\frac{b}{c}\)\(+\)\(\frac{c}{b}\)\(>=2\)\(;\)\(\frac{a}{c}\)\(+\)\(\frac{c}{a}\)\(>=2\)( cái này bạn tự chứng minh được)
\(=>\)\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\)) \(>=3+2+2+2\)
\(=>\)\(\left(a+b+c\right)\)(\(\frac{1}{a}\)\(+\)\(\frac{1}{b}\)\(+\)\(\frac{1}{c}\)) \(>=9\)(\(luôn\)\(đúng\)\(với\)\(mọi\)\(a,b,c\)\(dương\))
\(k\)\(cho\)\(mình\)\(nha\)\(các\)\(bạn\), \(mình\)\(k\)\(lại\)\(cho\)\(nhé\)
\(chúc\)\(các\)\(bạn\)\(học\)\(tốt\)
Áp dụng Cachy cho 3 số ra ngay kết quả em nhé!
hoặc cách 2: ÁP dụng BUN cho 3 số
\(\left(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2+\left(\sqrt{c}\right)^2\right)\left(\frac{1}{\sqrt{a}^2}+\frac{1}{\sqrt{b}^2}+\frac{1}{\sqrt{c}^2}\right)\ge\)
\(\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2=3^2=9\)
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge\frac{3}{2}\)
+) cm: \(\frac{1}{a^2+1}=1-\frac{a^2}{a^2+1}\ge1-\frac{a^2}{2a}=1-\frac{a}{2}\)
\(\frac{1}{b^2+1}\ge1-\frac{b}{2}\)
\(\frac{1}{c^2+1}\ge1-\frac{c}{2}\)
Cộng theo vế:
\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge3-\frac{a+b+c}{2}=\frac{3}{2}\)
Dấu "=" xảy ra <=> a = b = c = 1
Thay \(1=a+b+c\) vào vế phải của BĐT
=> BĐT cần CM trở thành:
<=> \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{2a+b+c}{b+c}+\frac{2b+c+a}{c+a}+\frac{2c+a+b}{a+b}\)
<=> \(2\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\ge\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}+3\)
<=> \(2\left(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\right)\ge3\)
<=> \(\frac{ac}{b\left(b+c\right)}+\frac{ab}{c\left(c+a\right)}+\frac{bc}{a\left(a+b\right)}\ge\frac{3}{2}\)
<=> \(\frac{a^2b^2}{abc\left(c+a\right)}+\frac{b^2c^2}{abc\left(a+b\right)}+\frac{c^2a^2}{abc\left(b+c\right)}\ge\frac{3}{2}\) (1)
Có: \(VT\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+b+c+c+a\right)}=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\ge\frac{3abc\left(a+b+c\right)}{2abc\left(a+b+c\right)}=\frac{3}{2}\) (2)
(TA ĐÃ ÁP DỤNG BĐT CAUCHY - SCHWARZ)
TỪ (1) VÀ (2) => TA CÓ ĐPCM
bẫy nữa chăng
Theo bài ra , ta có :
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\ge9\left(1\right)\) và \(a+b=1\)
\(\Leftrightarrow\frac{a+1}{a}.\frac{b+1}{b}\ge9\)
\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\ge9ab\)
\(\Leftrightarrow ab+a+b+1\ge9ab\)( Vì ab > 0 )
\(\Leftrightarrow a+b+1\ge8ab\)
\(\Leftrightarrow2\ge8ab\)( Vì a + b = 1 )
\(\Leftrightarrow1\ge4ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)( Vì a + b = 1 )
\(\Leftrightarrow\left(a+b\right)^2\ge0\)(2)
BĐT (2) đúng , mà các phép biến đổi trên là tương đương , vậy BĐT (1) đúng với mọi a,b
=) đpcm
Dấu "=" xảy ra (=) a = b
Chúc bạn học tốt =))