Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
REFER
C1 Đường tròn lượng giác là đường tròn định hướng có tâm là gốc O của hệ toạ độ trực chuẩn có bán kính bằng 1
C2 \(\tan-\dfrac{\pi}{3}\times\dfrac{180}{\pi}=-\sqrt{3}\)
Bài 1:
\(P=\dfrac{13+14+15}{2}=21\)
\(S=\sqrt{21\cdot\left(21-13\right)\cdot\left(21-14\right)\cdot\left(21-15\right)}=84\left(đvdt\right)\)
Bài 2:
\(p=\dfrac{26+28+30}{2}=42\)
\(S=\sqrt{42\cdot\left(42-26\right)\cdot\left(42-28\right)\cdot\left(42-30\right)}=336\)
\(r=\dfrac{336}{42}=8\)
Chọn A.
Ta có nửa chu vi của tam giác đã cho là:
(5 + 12 + 13) : 2 = 15
Mà 52 + 122 = 132 nên tam giác đã cho là tam giác vuông có diện tích là:
S = 1/2 .5.12 = 30
Mặt khác S = pr nên
Đáp án: D
(C): x 2 + y 2 + 6x - 8y - 11 = 0 ⇔ (x + 3 ) 2 + (y - 4 ) 2 = 11 + 25
⇔ (x + 3 ) 2 + (y - 4 ) 2 = 36 ⇔ (x + 3 ) 2 + (y - 4 ) 2 = 6 2
Vậy đường tròn (C) có tâm I(-3;4) và bán kính R = 6
Tham khảo:
Ta có: \(R=\dfrac{abc}{4S};r=\dfrac{S}{p}\)
Vì tam giác ABC vuông cân tại A nên \(b=c\) và \(a=\sqrt{b^2+c^2}=b\sqrt{2}\)
Xét tỉ số:
\(\dfrac{R}{r}=\dfrac{abc.p}{4S^2}=\dfrac{abc.\dfrac{a+b+c}{2}}{4.\dfrac{1}{4}.\left(b.c\right)^2}=\dfrac{a\left(a+2b\right)}{2b^2}=\dfrac{2b^2\left(1+\sqrt{2}\right)}{2b^2}=1+\sqrt{2}\)
\(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=a\) (a>0 mới đúng, độ dài ko thể nhỏ hơn 0)
\(\Leftrightarrow\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|=a\)
\(\Leftrightarrow3\left|\overrightarrow{MG}\right|=a\) (do \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\))
\(\Leftrightarrow MG=\dfrac{a}{3}\)
\(\Rightarrow\) Tập hợp M là đường tròn tâm G bán kính \(\dfrac{a}{3}\)
\(\left(C\right):x^2-2x+1+y^2+8y+16-49=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y+4\right)^2=49=7^2\)
Vậy: Tâm là I(1;-4) và R=7
1: bán kính là 1
2: tan (-pi/3)=-căn 3