Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=13/12x14/13x15/14x16/15x...x2006/2005x2007/2006x2008/2007
=2008/12
=502/3
A = 1\(\dfrac{1}{12}\) \(\times\) 1\(\dfrac{1}{13}\) \(\times\) 1\(\dfrac{1}{14}\) \(\times\) 1\(\dfrac{1}{15}\) \(\times\) ... \(\times\) 1\(\dfrac{1}{2005}\) \(\times\) 1\(\dfrac{1}{2006}\) \(\times\) 1\(\dfrac{1}{2007}\)
A = ( 1 + \(\dfrac{1}{12}\)) \(\times\) ( 1 + \(\dfrac{1}{13}\)) \(\times\) ( 1 + \(\dfrac{1}{14}\)) \(\times\)...\(\times\) ( 1 + \(\dfrac{1}{2006}\))\(\times\)(1+\(\dfrac{1}{2007}\))
A = \(\dfrac{13}{12}\) \(\times\) \(\dfrac{14}{13}\) \(\times\) \(\dfrac{15}{14}\) \(\times\) ...\(\times\) \(\dfrac{2007}{2006}\) \(\times\) \(\dfrac{2008}{2007}\)
A = \(\dfrac{13\times14\times15\times...\times2007}{13\times14\times15\times...\times2007}\) \(\times\) \(\dfrac{2008}{12}\)
A = 1 \(\times\) \(\dfrac{502}{3}\)
A = \(\dfrac{502}{3}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}.\frac{25}{24}...\frac{100}{99}\)
\(1\frac{1}{3}\times1\frac{1}{8}\times1\frac{1}{15}\times1\frac{1}{24}\times...\times1\frac{1}{99}\)
\(=\frac{4}{3}\times\frac{9}{8}\times\frac{16}{15}\times\frac{25}{24}\times...\times\frac{100}{99}\)
\(=\frac{2\times2}{1\times3}\times\frac{3\times3}{2\times4}\times\frac{4\times4}{3\times5}\times\frac{5\times5}{4\times6}\times...\times\frac{10\times10}{9\times11}\)
\(=\frac{2}{1}\times\frac{10}{11}\)
\(=\frac{20}{11}\)
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
\(1\frac{1}{2}.1\frac{1}{3}.1\frac{1}{4}......1\frac{1}{1963}\)
\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}....\frac{1964}{1963}\)
\(=\frac{3.4.5....1964}{2.3.4....1963}\)
\(=\frac{1964}{2}=982\)
\(1\frac{1}{2}\)x\(1\frac{1}{3}\)x\(1\frac{1}{4}\)x.....x\(1\frac{1}{1963}\)
=\(\frac{3}{2}\)x\(\frac{4}{3}\)x\(\frac{5}{4}\)x.....x\(\frac{1964}{1963}\)
=\(1964:2\frac{1}{1}\)
=983
a; (5142 - 17 x 8 + 242 : 11) x (27 - 3 x 9)
= (5142 - 17 x 8 + 242 : 11) x (27 - 27)
= (5142 - 17 x 8 + 242 : 11) x 0
= 0
b;
(1 + \(\dfrac{1}{2}\)) \(\times\) (1 + \(\dfrac{1}{3}\)) \(\times\) ( 1 + \(\dfrac{1}{4}\)) \(\times\) ... \(\times\) (1 + \(\dfrac{1}{2010}\)) \(\times\)(1 + \(\dfrac{1}{2011}\))
= \(\dfrac{2+1}{2}\) \(\times\) \(\dfrac{3+1}{3}\) \(\times\) \(\dfrac{4+1}{4}\)\(\times\) ... \(\times\) \(\dfrac{2010+1}{2010}\)\(\times\) \(\dfrac{2011+1}{2011}\)
= \(\dfrac{3}{2}\)\(\times\)\(\dfrac{4}{3}\)\(\times\)\(\dfrac{5}{4}\)\(\times\)...\(\times\)\(\dfrac{2011}{2010}\)\(\times\)\(\dfrac{2012}{2011}\)
= \(\dfrac{2012}{2}\)
= 1006
\(1\dfrac{1}{3}\times1\dfrac{1}{8}\times1\dfrac{1}{15}\times1\dfrac{1}{24}\times1\dfrac{1}{35}\)
= \(\dfrac{4}{3}\times\dfrac{9}{8}\times\dfrac{16}{15}\times\dfrac{25}{24}\times\dfrac{36}{35}\)
= \(\dfrac{4\times9\times16\times25\times36}{3\times8\times15\times24\times35}\)
= \(\dfrac{1\times2\times2\times25\times36}{1\times2\times15\times24\times35}\)
= \(\dfrac{4\times25\times36}{30\times24\times35}\)
= \(\dfrac{1\times25\times36}{30\times6\times35}=\dfrac{1}{7}\)
Sai rồi nhé! Từ dấu bằng thứ 2 xuống dấu bằng thứ 3 bạn làm sao đc z?