K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5

mấy trừ mấy cơ ạ

29 tháng 5

Đổi ra phân số nhé

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé

23 tháng 8 2023

Trả lời cho bạn đỗ manh tiến

c: Ta có: \(\dfrac{1}{3}-\dfrac{7}{8}x=\dfrac{1}{4}\)

\(\Leftrightarrow x\cdot\dfrac{7}{8}=\dfrac{1}{12}\)

\(\Leftrightarrow x=\dfrac{1}{12}\cdot\dfrac{8}{7}=\dfrac{2}{21}\)

d: Ta có: \(\dfrac{3}{2}x+\dfrac{1}{7}=\dfrac{7}{8}\cdot\dfrac{64}{49}\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=1\)

hay \(x=\dfrac{2}{3}\)

14 tháng 4 2023

b,     B        =                       \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\)  + \(\dfrac{1}{2^3}\) -   \(\dfrac{1}{2^4}\)+.....+ \(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

\(\times\)  B       =                 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\) + \(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

\(\times\) B + B  =                1  -  \(\dfrac{1}{2^{100}}\)

3B             =              ( 1 - \(\dfrac{1}{2^{100}}\)

             B =               ( 1 - \(\dfrac{1}{2^{100}}\)) : 3

14 tháng 4 2023

       A              =          1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+......+ \(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\) 

A\(\times\)  3             =   3 +  1 + \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^2}\)+....+  \(\dfrac{1}{3^{n-1}}\) 

\(\times\) 3 - A        = 3 - \(\dfrac{1}{3^n}\)

       2A           = 3  - \(\dfrac{1}{3^n}\)

         A           = ( 3 - \(\dfrac{1}{3^n}\)) : 2

1 tháng 10 2023

a) \(0,25-\dfrac{2}{3}+1\dfrac{1}{4}\)

\(=\dfrac{1}{4}-\dfrac{2}{3}+\dfrac{5}{4}\)

\(=\dfrac{3}{12}-\dfrac{8}{12}+\dfrac{15}{12}\)

\(=\dfrac{10}{12}\)

\(=\dfrac{5}{6}\)

\(---\)

b) \(\dfrac{3^2}{2}:\dfrac{1}{4}+\dfrac{3}{4}\cdot2010\)

\(=\dfrac{9}{2}\cdot4+\dfrac{3015}{2}\)

\(=18+\dfrac{3015}{2}\)

\(=\dfrac{36}{2}+\dfrac{3015}{2}\)

\(=\dfrac{3051}{2}\)

\(---\)

c) \(\left\{\left[\left(\dfrac{1}{25}-0,6\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-1}{3}\right)+\dfrac{1}{2}\right]\)

\(=\left\{\left[\left(-\dfrac{14}{25}\right)^2:\dfrac{49}{125}\right]\cdot\dfrac{5}{6}\right\}-\left[\left(\dfrac{-2}{6}\right)+\dfrac{3}{6}\right]\)

\(=\left\{\left[\dfrac{196}{625}\cdot\dfrac{125}{49}\right]\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)

\(=\left\{\dfrac{4}{5}\cdot\dfrac{5}{6}\right\}-\dfrac{1}{6}\)

\(=\dfrac{4}{6}-\dfrac{1}{6}\)

\(=\dfrac{3}{6}\)

\(=\dfrac{1}{2}\)

\(---\)

d) \(\left(-\dfrac{1}{2}-\dfrac{1}{3}\right)^2:\left[\left(\dfrac{-5}{36}\right)-\left(\dfrac{-5}{36}\right)^0\right]\)

\(=\left(-\dfrac{3}{6}-\dfrac{2}{6}\right)^2:\left[-\dfrac{5}{36}-1\right]\)

\(=\left(-\dfrac{5}{6}\right)^2:\left[-\dfrac{5}{36}-\dfrac{36}{36}\right]\)

\(=\dfrac{25}{36}:\left(\dfrac{-41}{36}\right)\)

\(=\dfrac{25}{36}\cdot\left(\dfrac{-36}{41}\right)\)

\(=-\dfrac{25}{41}\)

#\(Toru\)

1 tháng 10 2023

cảm ơn nhiều nha vừa kịp giờ lun

\(=\dfrac{85}{18}:\dfrac{85}{9}-\dfrac{136}{45}:\dfrac{136}{15}=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\)

22 tháng 4

Để tính tổng của biểu thức này, chúng ta cần thực hiện các phép cộng và trừ theo thứ tự từ trái sang phải.

\[4 + \frac{5}{6} - \frac{1}{9} \times \frac{1}{10} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{9} \times \frac{9}{5} + 1 - \frac{1}{3}\]

Đầu tiên, chúng ta sẽ làm các phép tính liên quan đến phân số:

\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{7}{12} + \frac{1}{36} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]

Tiếp theo, chúng ta sẽ tổng hợp các phân số:

\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{18}{90} + \frac{60}{180} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{2}{10} + \frac{10}{30} - \frac{2}{10} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{1}{90} - \frac{35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{36 + 35}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{2}{6} - \frac{1}{5} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - 3 - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]

Tiếp theo, chúng ta sẽ tính tổng các số nguyên:

\[= 4 - 3 + 1\]

Cuối cùng, chúng ta sẽ tổng hợp các phân số:

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{1}{5} + \frac{1}{3} - \frac{1}{5} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{30}{90}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6} - \frac{71}{90} + \frac{5}{180} - \frac{18}{90} + \frac{30}{90} - \frac{18}{90} + 1 - \frac{1}{3}\]

\[= 4 + \frac{5}{6}

Ta có: \(B=\dfrac{\dfrac{1}{22}-\dfrac{1}{2}+\dfrac{1}{13}}{\dfrac{3}{22}-\dfrac{3}{2}+\dfrac{3}{13}}\cdot\dfrac{\dfrac{3}{4}-0.375+\dfrac{3}{16}-\dfrac{3}{32}}{1-\dfrac{1}{2}+\dfrac{1}{4}-0.875}+\dfrac{3}{4}\)

\(=\dfrac{1}{3}\cdot\dfrac{-15}{4}+\dfrac{3}{4}\)

\(=\dfrac{-5}{4}+\dfrac{3}{4}=\dfrac{-1}{2}\)

8 tháng 7 2023

\(A=\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=3.\dfrac{1}{3}.\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)\)

\(\Rightarrow3A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(\Rightarrow3A-A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow2A=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...\dfrac{1}{3^{2022}}-\dfrac{1}{3^1}-\dfrac{1}{3^2}-\dfrac{1}{3^3}-...\dfrac{1}{3^{2022}}-\dfrac{1}{3^{2023}}\)

\(\Rightarrow2A=1-\dfrac{1}{3^{2023}}\)

\(\Rightarrow A=\dfrac{1}{2}\left(1-\dfrac{1}{3^{2023}}\right)\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2}.\dfrac{1}{3^{2023}}< \dfrac{1}{2}\)

\(B=\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{12}=\dfrac{4+3+1}{12}=\dfrac{8}{12}=\dfrac{2}{3}\)

mà \(\dfrac{2}{3}>\dfrac{1}{2}\) \(\left(\dfrac{2}{3}=\dfrac{4}{6}>\dfrac{1}{2}=\dfrac{3}{6}\right)\)

\(\Rightarrow A< B\)

 

 

8 tháng 7 2023

       A =      \(\dfrac{1}{3}\)\(\dfrac{1}{3^2}\)\(\dfrac{1}{3^3}\)+............+\(\dfrac{1}{3^{2023}}\)

     3A = 1+ \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{2022}}\)

3A - A =  1 - \(\dfrac{1}{3^{2023}}\)

   2A   = 1 - \(\dfrac{1}{3^{2023}}\) < 1

      B =  \(\dfrac{1}{3}\) + \(\dfrac{1}{4}\)\(\dfrac{1}{12}\)

      B  = \(\dfrac{4}{12}\) + \(\dfrac{3}{12}\) + \(\dfrac{1}{12}\)

     B   = \(\dfrac{8}{12}\)

     B   = \(\dfrac{2}{3}\) ⇒ 2B = \(\dfrac{4}{3}\) > 1 

2A < 2B ⇒ A < B 

10 tháng 5 2021

Mình làm được một câu thôi, bạn dựa vào làm nha!undefined