K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

1dam=100m

3 tháng 2 2021

1dam =1m

NV
8 tháng 6 2019

Cần tìm m để hàm số đồng biến trên khoảng nào bạn? Hay đồng biến trên R? Cần có 1 miền cụ thể

Chọn A

18 tháng 4 2018

Gọi tọa độ M(x;y;z)

Ta có: \(\overrightarrow{AB}\) = (2; -2; -8)

\(\overrightarrow{AM}\)=( x+1; y-2; z-3)

A, B, M thẳng hàng khi: \(\left[\overrightarrow{AB};\overrightarrow{AM}\right]\)=\(\overrightarrow{0}\)\(\left\{{}\begin{matrix}-2z+8y-10=0\\-8x-2z-2=0\\2y+2x-2=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x=0\\y=1\\z=-1\end{matrix}\right.\)

=> Câu D đúng

18 tháng 4 2018

- đó là giải theo tự luận còn bình thường hạnh giải kiểu trắc nghiệm thì hạnh sẽ thay điểm M vào phương trình (P).. nếu thỏa mãn thì chọn luôn!!.. nãy thử thì có mỗi câu D thỏa mãn

NV
1 tháng 9 2020

Câu đầu tìm m để ĐTHS làm sao bạn?

2.

\(x=1\) là TCĐ của ĐTHS \(\frac{mx^2-3x}{x-1}=0\) khi và chỉ khi \(mx^2-3x=0\) không có nghiệm \(x=1\)

\(\Leftrightarrow m.1^2-3.1\ne0\Leftrightarrow m\ne3\)

NV
7 tháng 8 2020

2.

\(y'=1+\left(m+1\right)cosx\le0;\forall x\in R\)

\(\Leftrightarrow\left(m+1\right)cosx\le-1\) ; \(\forall x\in R\)

- Với \(m=-1\) không thỏa mãn

- Với \(m>-1\Leftrightarrow cosx\le-\frac{1}{m+1}\)

\(\Rightarrow-\frac{1}{m+1}\ge1\Leftrightarrow m+1\le-1\Rightarrow m\le-2\) (ktm)

- Với \(m< -1\Leftrightarrow cosx\ge-\frac{1}{m+1}\Rightarrow-\frac{1}{m+1}\le-1\)

\(\Leftrightarrow m+1\ge1\Rightarrow m\ge0\) (ktm)

Vậy không tồn tại m để hàm đồng biến trên TXĐ

NV
7 tháng 8 2020

1.

\(y'=\left(2m+3\right)cosx+2-m\ge0;\forall x\)

\(\Leftrightarrow\left(2m+3\right)cosx\ge m-2\)

- Với \(m=-\frac{3}{2}\) thỏa mãn

- Với \(m>-\frac{3}{2}\Rightarrow cosx\ge\frac{m-2}{2m+3}\)

\(\Rightarrow\frac{m-2}{2m+3}\le\min\limits_Rcosx=-1\) \(\Leftrightarrow3m\le-1\Rightarrow m\le-\frac{1}{3}\Rightarrow-\frac{3}{2}< m\le-\frac{1}{3}\)

- Với \(m< -\frac{3}{2}\Rightarrow cosx\le\frac{m-2}{2m+3}\Rightarrow\frac{m-2}{2m+3}\ge\max\limits_Rcosx=1\)

\(\Leftrightarrow m-2\le2m+3\Rightarrow m\ge-5\)

Kết hợp lai ta được \(-5\le m\le-\frac{1}{3}\)

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng A. m = 0 B. m \(\le\) 0 C. m \(\in\left\{0;4\right\}\) D. m \(\ge\) 4 Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\) A. m \(\ge1\) B. \(m\le1\) C. \(0\le m\le1\) D. \(0\le m\le\frac{3}{4}\) Câu...
Đọc tiếp

Câu 1 : Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = \(\frac{x-1}{x^2-mx+m}\) có đúng một tiệm cận đứng

A. m = 0

B. m \(\le\) 0

C. m \(\in\left\{0;4\right\}\)

D. m \(\ge\) 4

Câu 2 : Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình x3 + x2 + x = m(x2 +1)2 có nghiệm thuộc đoạn \(\left[0;1\right]\)

A. m \(\ge1\)

B. \(m\le1\)

C. \(0\le m\le1\)

D. \(0\le m\le\frac{3}{4}\)

Câu 3 : Tìm giá trị lớn nhất M của hàm số y = cos2x + 4cosx + 1

A. M = 5

B. M = 4

C. M = 6

D. M = 7

Câu 4 : Cho hàm số y = \(\frac{x}{x-1}\) . Mệnh đề nào sau đây là đúng ?

A. Hàm số đồng biến trên khoảng (0;1)

B. Hàm số đồng biến trên R \(|\left\{1\right\}\)

C. Hàm số nghịch biến trên \(\left(-\infty;1\right)\cup\left(1;+\infty\right)\)

D. Hàm số nghịch biến trên khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

Câu 5 : Cho hàm số y = \(\frac{\left(m-1\right)sinx-2}{sinx-m}\) . Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (0;\(\frac{\Pi}{2}\) )

A. \(m\in\left(-1;2\right)\)

B. m \(\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

C. m \(\in(-\infty;-1]\cup[2;+\infty)\)

D. m \(\in(-\infty;0]\cup[1;+\infty)\)

2
NV
16 tháng 10 2020

1.

Xét \(x^2-mx+m=0\) (1)

\(\Delta=m^2-4m\)

Hàm có đúng 1 tiệm cận đứng khi:

TH1: \(\Delta=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=4\end{matrix}\right.\)

Th2: (1) có 1 nghiệm \(x=1\)

\(\Leftrightarrow1-m+m=0\left(ktm\right)\)

Vậy \(m\in\left\{0;4\right\}\)

2.

\(\Leftrightarrow m=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\)

Xét hàm \(f\left(x\right)=\frac{x^3+x^2+x}{\left(x^2+1\right)^2}\Rightarrow f'\left(x\right)=\frac{\left(1-x\right)\left(x+1\right)^2}{\left(x^2+1\right)^3}\ge0;\forall x\in\left[0;1\right]\)

Hàm đồng biến trên [0;1] \(\Rightarrow f\left(0\right)\le m\le f\left(1\right)\Leftrightarrow0\le m\le\frac{3}{4}\)

NV
16 tháng 10 2020

3.

\(y'=-2sin2x-4sinx=0\Leftrightarrow sinx=0\)

\(\Rightarrow x=k\pi\)

\(y\left(0\right)=6\) ; \(y\left(\pi\right)=-2\)

\(\Rightarrow M=6\)

4.

\(y'=\frac{-1}{\left(x-1\right)^2}< 0\Rightarrow\) hàm số nghịch biến trên các khoảng \(\left(-\infty;1\right)\)\(\left(1;+\infty\right)\)

5.

\(y'=\frac{-m\left(m-1\right)+2}{\left(sinx-m\right)^2}.cosx< 0\Leftrightarrow-m^2+m+2< 0\)

\(\Leftrightarrow m\in\left(-\infty;-1\right)\cup\left(2;+\infty\right)\)

11 tháng 10 2019

Mọi người làm giuap mình với ạ 😌

NV
11 tháng 10 2019

Nhìn câu vẽ đồ thị kia là tiêu rồi bạn

Bạn tự vẽ đồ thị, mấy câu sau mình làm thì được

NV
9 tháng 9 2020

\(y'=3x^2+2x+m+1\)

Để hàm số có 2 cực trị \(\Leftrightarrow\Delta'=1-3\left(m+1\right)>0\Leftrightarrow m< -\frac{2}{3}\)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}\\x_{CĐ}.x_{CT}=\frac{m+1}{3}\end{matrix}\right.\)

a/ Để biểu thức bài toán xác định \(\Rightarrow m\ne-1\)

\(\frac{x_{CĐ}+x_{CT}}{x_{CĐ}.x_{CT}}=3\Leftrightarrow\frac{-\frac{2}{3}}{\frac{m+1}{3}}=3\Leftrightarrow m+1=-\frac{2}{3}\Rightarrow m=-\frac{5}{3}\)

b/ Để hai cực trị cùng âm \(\Leftrightarrow\left\{{}\begin{matrix}x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\\x_{CĐ}.x_{CT}=m+1>0\end{matrix}\right.\)

\(\Leftrightarrow-1< m< -\frac{2}{3}\)

c/ Do \(x_{CĐ}+x_{CT}=-\frac{2}{3}< 0\) nên ko tồn tại m để hàm số có 2 cực trị cùng dương

NV
3 tháng 6 2019

Câu 1:

\(y'=\frac{\left(4x+1-m\right)\left(x-m\right)-\left(2x^2+\left(1-m\right)x+m+1\right)}{\left(x-m\right)^2}=\frac{2x^2-4mx+m^2-2m-1}{\left(x-m\right)^2}\)

Xét pt: \(f\left(x\right)=2x^2-4mx+m^2-2m-1=0\)

\(\Delta'=4m^2-2\left(m^2-2m-1\right)=2\left(m+1\right)^2\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{2m-\sqrt{2}\left(m+1\right)}{2}=\left(1-\frac{\sqrt{2}}{2}\right)m-\frac{\sqrt{2}}{2}\\x_2=\frac{2m+\sqrt{2}\left(m+1\right)}{2}=\left(1+\frac{\sqrt{2}}{2}\right)m+\frac{\sqrt{2}}{2}\end{matrix}\right.\)

ĐK1: để hàm số liên tục trên \(\left(1;+\infty\right)\) \(\Rightarrow m\le1\) (1)

ĐK2: \(x_2\le1\Rightarrow\left(1+\frac{\sqrt{2}}{2}\right)m+\frac{\sqrt{2}}{2}\le1\)

\(\Rightarrow\left(1+\frac{\sqrt{2}}{2}\right)m\le1-\frac{\sqrt{2}}{2}\Rightarrow m\le3-2\sqrt{2}\) (2)

Kết hợp (1) và (2) ta được \(m\le3-2\sqrt{2}\)

NV
3 tháng 6 2019

Câu 2:

\(y'=m-3+\left(2m+1\right)sinx\)

Để hàm số nghịch biến trên R \(\Leftrightarrow y'\le0\) \(\forall x\in R\)

\(\Rightarrow m-3+\left(2m+1\right)sinx\le0\)

\(\Leftrightarrow\left(2m+1\right)sinx\le3-m\)

TH1: \(2m+1=0\Rightarrow m=-\frac{1}{2}\Rightarrow0\le3+\frac{1}{2}=\frac{7}{2}\) (đúng)

TH2: \(2m+1< 0\Rightarrow m< -\frac{1}{2}\)

\(\left(2m+1\right)sinx\le3-m\Leftrightarrow sinx\ge\frac{3-m}{2m+1}\)

\(\Rightarrow\min\limits_{x\in R}sinx\ge\frac{3-m}{2m+1}\Rightarrow\frac{3-m}{2m+1}\le-1\)

\(\Leftrightarrow\frac{3-m}{2m+1}+1\le0\Leftrightarrow\frac{m+4}{2m+1}\le0\Rightarrow-4\le m< -\frac{1}{2}\)

TH3: \(2m+1>0\Rightarrow m>-\frac{1}{2}\)

\(\left(2m+1\right)sinx\le3-m\Rightarrow sinx\le\frac{3-m}{2m+1}\)

\(\Leftrightarrow\max\limits_{x\in R}\left(sinx\right)\le\frac{3-m}{2m+1}\Rightarrow\frac{3-m}{2m+1}\ge1\)

\(\Leftrightarrow\frac{2-3m}{2m+1}\ge0\Leftrightarrow-\frac{1}{2}< m\le\frac{2}{3}\)

Kết hợp lại ta được: \(-4\le m\le\frac{2}{3}\)

Chọn A