K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2018

Chứng minh rằng 1 - 1/2 + 1/3 - ... - 1/1990 = 1/996 + 1/997 + ... + 1/990,Toán học Lớp 6,bài tập Toán học Lớp 6,giải bài tập Toán học Lớp 6,Toán học,Lớp 6

đó bạn

19 tháng 4 2017

đáp số là 996 đúng ko

19 tháng 4 2017

dung do bn nguyễn như Quỳnh

12 tháng 8 2017

Bài 1 :

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x}=\dfrac{996}{997}\)

Đặt \(x=x.\left(x+1\right)\) . Ta có :

\(=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{996}{997}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{\left(x+1\right)}=\dfrac{996}{997}\)

\(\Leftrightarrow1-\dfrac{1}{\left(x+1\right)}=\dfrac{996}{997}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)}=1-\dfrac{996}{997}=\dfrac{1}{997}\)

\(\Leftrightarrow x=\left(997-1\right).997=993012\)

Bài 2 : Giải

Gọi số tuổi của con hiện nay là x thì số tuổi của bố hiện nay là x . 4

- Số tuổi của con 6 năm trước là : x - 6

Ta có :

x . 4 - 6 = (x - 6) . 13

<=> x . 4 - 6 = x . 13 - 78

<=> 78 - 6 = x . 13 - x .4

<=> 72 = x . (13 - 4)

<=> 72 = x . 9

=> x = 8

Vậy số tuổi của con hiện nay là 8 .

=> Số tuổi của bố hiện nay là: 8 . 4 = 32 (tuổi)

Đs : ....

12 tháng 8 2017

Hiện nay tuổi bố hơn tuổi con là :

4 - 1 = 3 (lần tuổi con)

6 năm trước , bố hơn con là:

13 - 1 = 12 (lần tuổi con)

Vì hiệu số tuổi không đổi => 3 lần tuổi con hiện nay = 12 lần tuổi con 6 năm trước ..

=> Tuổi con hiện nay bằng 4 lần tuổi con 6 năm trước .

Coi tuổi con 6 năm trước là 1 phần thì tuổi con hiện nay là 2 phần như thế .

Số tuổi của con hiện nay là:

4 : (2 - 1) x 2 = 8 (tuổi)

Số tuổi của bố hiện nay là:

8 x 4 = 32 (tuổi)

Đs:

BT1: CMR: a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\) b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\) c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\) d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\) e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\) f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\) BT2: Tính tổng a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\) b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\) BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\) CMR: 1 < S <...
Đọc tiếp

BT1: CMR:

a) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)

b) \(\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{1}{36}+\dfrac{1}{64}+\dfrac{1}{100}+\dfrac{1}{144}+\dfrac{1}{196}< \dfrac{1}{2}\)

c) \(\dfrac{1}{3}+\dfrac{1}{30}+\dfrac{1}{32}+\dfrac{1}{35}+\dfrac{1}{45}+\dfrac{1}{47}+\dfrac{1}{50}< \dfrac{1}{2}\)

d) \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)

e) \(\dfrac{1}{3}< \dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}< \dfrac{3}{16}\)

f) \(\dfrac{1}{41}+\dfrac{1}{42}+\dfrac{1}{43}+...+\dfrac{1}{79}+\dfrac{1}{80}>\dfrac{7}{12}\)

BT2: Tính tổng

a) A=\(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)

b) E=\(1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+\dfrac{1}{4}\left(1+2+3+4\right)+...+\dfrac{1}{200}\left(1+2+3+...+200\right)\)

BT3: Cho S=\(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)

CMR: 1 < S < 2

1
22 tháng 3 2017

bài này có trong sách Nâng cao và Phát triển bạn nhé