\(\left(n;6\right)=1\)thì \(n^2-1⋮24\)

...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.

Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.

Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.

Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.

Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)

b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)

Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.

Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.

Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.

c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

B là tích bốn số tự nhiên liên tiếp nên chia hết 3.

Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.

Mà (3;8) = 1 nên B chia hết 3.8 = 24.

24 tháng 4 2017

de nay kho nhi

3 tháng 5 2017

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

2 tháng 11 2017

a, A= (n+2)^2 + 1

Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5

=> A ko chia hết cho 8

b, n lẻ nên n có dạng 2k+1(k thuộc N)

<=> 5^n = 5^2k+1= = 5^2k . 5 =  (4+1)^2k  .  5  =  (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1

=> B = 5^n - 1 chia hết cho 4

11 tháng 3 2020

Ta có : 

(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )

=> n - 1 và n + 1 là 2 số chẵn liên tiếp 

=> ( n - 1 )(n + 1 ) chia hết cho 8 

(n,6) = 1 => n không chia hết cho 3

=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )

Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3  => (n - 1)(n+1) chia hết cho 3 

Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3 

Với cả 2TH => ( n-1)(n+1) chia hết cho 3 

Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)

11 tháng 3 2020

ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)

n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp

Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8  (2)

Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)

Mà UCLN (3,8) = 1

nên \(\left(n-1\right).\left(n+1\right)⋮24\)

22 tháng 1 2018

a) Ta xét các trường hợp:

+)  Với n = 3k  \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=\left(3k-1\right)\left(3k+2\right)+12\)

Ta thấy (3k - 1)(3k + 2) không chia hết cho 3, 12 chia hết cho 3 nên (3k - 1)(3k + 2) + 12 không chia hết cho 3 hay (3k - 1)(3k + 2) + 12 không chia hết cho 9.

+)  Với n = 3k + 1 \(\left(k\in Z\right)\), ta có \(\left(n-1\right)\left(n+2\right)+12=3k\left(3k+3\right)+12=9k\left(k+1\right)+12\)

Ta thấy \(9k\left(k+1\right)⋮9;12⋮̸9\Rightarrow9k\left(k+1\right)+12⋮̸9\)

+) Với n = 3k + 2 \(\left(k\in Z\right)\), ta có: \(\left(n-1\right)\left(n+2\right)+12=\left(3k+1\right)\left(3k+4\right)+12\)

Ta thấy (3k + 1)(3k + 4) không chia hết cho 3, 12 chia hết cho 3 nên (3k + 1)(3k + 4) + 12 không chia hết cho 3 hay (3k + 1)(3k + 4) + 12 không chia hết cho 9.

b) Tương tự bài trên.