Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do n, n + 1 là hai số tự nhiên liên tiếp nên tích này chia hết cho 2.
Nếu \(n⋮3\Rightarrow\) tích trên chia hết cho 3. Do (2;3) = 1 nên tích trên chia hết cho 6.
Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 hay 2n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Nếu n chia 3 dư 2 thì n + 1 chia hết cho 3. Vậy tích trên chia hết cho 3. Do đó nó cũng chia hết cho 6.
Tóm lại với mọi số tự nhiên n thì \(n\left(n+1\right)\left(2n+1\right)⋮6\)
b. Ta đặt \(A=n^5-5n^3+4n=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n-2\right)\)
Đây là tích 5 số tự nhiên liên tiếp nên chia hết cho 3 và 5.
Trong 5 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra A chia hết cho 8.
Lại thấy (3; 5; ;8) = 1 nê A chia hết cho 3.5.8 = 120.
c) \(B=n^4+6n^3+11n^2+6n=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
B là tích bốn số tự nhiên liên tiếp nên chia hết 3.
Trong 4 số tự nhiên liên tiếp thì luôn có hai số chẵn liên tiếp. Tích hai số này lại chia hết cho 8, suy ra B chia hết cho 8.
Mà (3;8) = 1 nên B chia hết 3.8 = 24.
Bài 2 a:
\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)
Mà tích 3 số nguyên liên tiếp chia hết cho 3, suy ra A chia hết cho 3
a, A= (n+2)^2 + 1
Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5
=> A ko chia hết cho 8
b, n lẻ nên n có dạng 2k+1(k thuộc N)
<=> 5^n = 5^2k+1= = 5^2k . 5 = (4+1)^2k . 5 = (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1
=> B = 5^n - 1 chia hết cho 4
Ta có :
(n,6) = 1 => n phải là số lẻ ( nếu n chẵn thì ( n,6) = 2 )
=> n - 1 và n + 1 là 2 số chẵn liên tiếp
=> ( n - 1 )(n + 1 ) chia hết cho 8
(n,6) = 1 => n không chia hết cho 3
=> n sẽ có dạng là 3k +1 ; 3k + 2 ( k thuộc Z )
Với n = 3k +1 => n -1 = 3k + 1 -1 = 3k chia hết cho 3 => (n - 1)(n+1) chia hết cho 3
Với n = 3k + 2 => n + 1 = 3k + 2 +1 = 3k+ 3 chia hết cho 3 => ( n -1 )(n +1) chia hết cho 3
Với cả 2TH => ( n-1)(n+1) chia hết cho 3
Mà (8,3)= 1 => (n-1)(n+1) chia hết cho 24 ( đpcm)
ta có \(\left(n-1\right).n.\left(n+1\right)⋮3\) mà UCLN (3,n) = 1
nên \(\left(n-1\right).\left(n+1\right)⋮3\) (1)
n là số nguyên tố lớn hơn 3 nên n là số lẻ, p - 1 và p + 1 là hai số chẵn liên tiếp
Trong số hai số chẵn liên tiếp , có một số là bội của 4 nên tích chúng chia hết cho 8 (2)
Từ (1) và (2) suy ra \(\left(n-1\right).\left(n+1\right)⋮3và8\)
Mà UCLN (3,8) = 1
nên \(\left(n-1\right).\left(n+1\right)⋮24\)
Câu 1: ta có:
\(4C=4^2+4^3+...+4^n+4^{n+1}\)lấy 4C-C ta có:\(3C=4^{n+1}-4\)
=> C=\(\frac{4^{n+1}-4}{3}\)
b, tương tự ta có: \(5D=5+5^2+...+5^{2000}+5^{2001}\)
=> D=\(\frac{5^{2001}-1}{4}\)
Câu 2: ta có: \(2A=2+2^2+2^3+...+2^{200}+2^{201}\)
=> Lấy 2A - A, ta có: \(A=2^{201}-1\)=> A+1=2201 -1+1=2201 .
Vậy \(A+1=2^{201}\)
Câu 3: Ta có: \(3B=3^2+3^3+3^4+...+3^{2005}+3^{2006}\)
=> \(B=\frac{3^{2006}-3}{2}\)=> \(2B+3=3^{2006}-3+3=3^{2006}\)
Vậy 2B + 3 là một lũy thừa của 3...
Câu 4: Do 4=22nên ta có: \(2C=2^3+2^3+2^4+...+2^{2005}+2^{2006}\)
=> \(C=2^{2006}+2^3-\left(2^2+4\right)\)=>\(C=2^{2006}\)
Vậy C là lũy thừa của 2 có số mũ là 2006
Câu 5: a, Do 3n+2 chia hết cho n-1 hay:
3n-3+5 sẽ chia hết cho n-1 =>3(n-1) +5 chia hết cho n-1...mà 3(n-1) chia hết cho n-1 nên 5 chia hết n-1;
=> n-1 thuộc (1,5,-1,-5);;; nên n tương ứng với(2;6;0;-4)
b ,Do n+6 chia hết cho n nên 6 chia hết cho n hay n là ước của 6
nên => n thuộc (1,6,-1,-6);
c, Do 3n+4 chia hết cho n-1 hay: 3n-3+7 chia hết cho n-1
=> 3(n-1)+7 chia hết cho n-1 => 7 chia hết cho n-1;
n -1 thuộc (1,7,-1,-7) hay n sẽ tương ứng với( 2,8,0,-6);
d, Do n+5 chia hết cho n+1 hay n+1+4 chia hết cho n+1
=> 4 chia hết cho n+1 => n+1 thuộc (1,4,-1,-4) nên n tương ứng với (0,3,-2,-5);
giups mik ik