K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

Gọi ố hữu tỉ đó là \(\frac{a}{b}\) thì \(\left(\frac{a}{b}\right)^2=x\) với x nguyên.

<=> \(\frac{a^2}{b^2}=x\) <=> a2 : b2 = x <=> (a : b)2 = x <=> a,b là số nguyên.

 

27 tháng 6 2015

Giả sử số hữu tỉ có dạng \(\frac{a}{b}\) (a, b thuộc Z, dạng tối giản)
Bình phương của nó là: \(\frac{a^2}{b^2}=k\) (k là 1 số nguyên dương)

\(\Rightarrow a^2=kb^2\)

+Nếu k là một số chính phương (=m2) thì khai căn của nó là một số nguyên (thỏa đề bài)

+Nếu k không phải là một số chính phương, thì \(\sqrt{k}\) là một số vô tỉ.

\(\Rightarrow a^2=\left(\sqrt{k}.b\right)^2\Rightarrow a=\sqrt{k}.b\) hoặc \(a=-\sqrt{k}.b\)

Mà a, b là 2 số nguyên => \(\sqrt{k}\) là một số nguyên (vô lí, vì \(\sqrt{k}\) là số vô tỉ)

\(\Rightarrow\) k buộc phải là một số chính phương
Bình phương của 1 số là số chính phương, do đó nó là một số nguyên!


 

a: Để y là số nguyên thì 2a-4 chia hết cho 3

=>2a-4=3k(k thuộc Z)

=>\(a=\dfrac{3k+4}{2}\left(k\in Z\right)\)

b: Để y ko âm cũng không dương thì 2a-4=0

=>a=2

24 tháng 10 2016

1, 2, 3, 4

123, 234, 345, 456

1,2345666... ; 2,3344588... ; 3,4578923... ; 2,9887770044...

2, 5, 7, 29

10, 20, 30, 40

1,3,5,7

-2, -4, -6, -8

1, -1, 2, -2

Chả có số nào cả

banh Sẽ đúng đó!

20 tháng 8 2017

câu 5 nhé

30 tháng 7 2023

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

5 tháng 2 2016

minh moi hok lop 6

13 tháng 10 2023

Bạn An phát biểu sai vì 0 là số hữu tỉ(vì \(0=\dfrac{0}{1}\))

Bạn Bình phát biểu sai vì phải thêm điều kiện \(b\ne0\) nữa thì \(\dfrac{a}{b}\) mới là số hữu tỉ

Bạn Chi nói đúng vì tất cả các số nguyên a đều viết được dưới dạng \(\dfrac{a}{1}\) nên chúng là số hữu tỉ