K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2016

1)  \(55^{n+1}-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

22 tháng 6 2016

2) A= \(n^2\left(n+1\right)+2n\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

A là tích 3 số TN liên tiep => A\(⋮\)2; A\(⋮\)3

=> A\(⋮\)2.3

A\(⋮\)6

9 tháng 8 2020

câu 1 đề đúng nha bn

còn đề câu 2 là chia hết cho 45

9 tháng 8 2020

Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !

21 tháng 9 2017

1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)

\(= 55^n(55-1)\)

\(= 55^n . 54\)

\(= 55^n - 54 : 54\)

\(= 55^n\)

21 tháng 9 2017

1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54

=> 55^n+1 -55^n chia het cho 4

15 tháng 9 2016

a) n3 - n

= n.(n2 - 1)

= n.(n - 1).(n + 1)

Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp 

=> n.(n - 1).(n + 1) chia hết cho 2 và 3

Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6

=> n3 - n chia hết cho 6 (đpcm)

b) 55n+1 - 55n 

= 55n.55 - 55n 

= 55n.(55 - 1)

= 55n.54 chia hết cho 54 (đpcm)

25 tháng 6 2019

a)

\(55^{n+1}-55^n\\ =55^n.55-55^n\\ =55^n\left(55-1\right)\\ =55^n.54⋮54\\ \RightarrowĐpcm\)

b)

\(n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \)

c)

\(2^{n+2}+2^{n+1}+2^n\\ =2^n.2^2+2^n.2+2^n\\ =2^n\left(4+2+1\right)\\ =2^n.7⋮7\)

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

23 tháng 9 2016

    n2 ( n + 1) +2n (n + 1 )

       = n (n + 1 ) ( n + 2 )

        Vì n ; n + 1 ; n + 2 là các số tự nhiên liên tiếp

           \(\Rightarrow\) n ( n + 1 ) ( n + 2 ) chia hết cho 6

            Vậy n2 ( n + 1 ) ( n + 2 ) luôn chia hết cho 6 với mọi giá trị của n

23 tháng 9 2016

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
Vậy ta được điều phải chứng minh

4 tháng 10 2015

a)9.10n+18

=9.(10n+2)

=9.[1000....0000(n chữ số 0) +2]

=9.[1000....0002(n-1 chứ số 0)]

ta thấy + 9.[1000....0002(n-1 chứ số 0)] chia hết cho 9

           +1000...0002(n-1 chữ số 0) chia hết cho 3 (vì tổng các chữ số của nó là 3 chia hết cho 3)

=>9.[1000....0002(n-1 chứ số 0)] chia hết cho 27 hay 9.10n+18 chia hết cho 27