K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

bài 1

đặt a = n5 - n = n (n4 - 1) = n (n - 1) (n + 1) (n2 + 1)

n(n + 1) luôn chia hết cho 2 => a luôn chia hết cho 2

ta cần cm a chia hết cho 5 => có 2 trường hợp

th1: n chia hết cho 5 => a chia hết cho 5

th2: n ko chia hết cho 5 => n = 5k + b (với b = 1 ; 2 ; 3 ; 4)

với b = 1 => n - 1 = 5k

với b = 2 => n2 + 1 = (5k+2)2 + 1 = 25k2 + 20k + 5

=> a chia hết cho 5

với b=3 => n2 + 1 = (5k+3)2 +1 = 25k2 + 30k + 10

=> a chia hết cho 5

với b = 4 => n + 1 = 5k + 5

=> a chia hết cho 5

từ các th trên => a luôn chia hết cho 5

2 và 5 nguyên tố cùng nhau => a chia hết cho 00 => a tận cùng là 0

=> đpcm

11 tháng 2 2017

bài 3

A = x4 - 2x3 + 3x2 - 4x + 2015

= (x2)2 - 2x2x + x2 + 2x2 - 4x + 2 + 2013

= (x2 - x)2 + 2(x - 1)2 +2013

có (x2 - x)2 và 2(x - 1)2 luôn lớn hơn hoặc = 0

=> A luôn lớn hơn hoặc = 2013

=> A min = 2013 tại (x2 - x)2 = 2(x - 1)2 = 0 <=> x = 1

Bài 1:1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 12,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BNBài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là...
Đọc tiếp

Bài 1:

1,Tìm m sao cho phương trình ẩn x :(m-1).x+3m-2=0 có nghiệm duy nhất thỏa man x> bằng 1

2,Giải phương trình x2+\(\frac{9x^2}{\left(x+3\right)^2}\)=40

Bài 2::Cho hình vuông ABCD có 2 đường chéo cắt nhau tại O .Một đường thẳng kẻ qua A cắt cạnh BC tại M và cắt đường thẳng CD tại MN.Gọi K là giao của OM và DN .Chứng minh CK vuông góc BN

Bài 3: hình vuông ABCD và 13 đường thẳng bất kì có cùng tính chất là mỗi đường thẳng chia hình vuông thành 2 tứ giác có tỉ số diện tích là \(\frac{2}{5}\).Chứng minh rằng có 4 đường thẳng trong 13 đoạn thẳng đó cùng đi qua 1 điểm

Bài 4:Cho hình bình hành ABCD (AC>BD),hình chiếu vuông góc của C lên AB,AD lần lượt là E và F

Chúng minh:

1,CE.CD=CB.CF và △ABC đồng dạng △FCE

2,AB.AE+AD.AF=AC2

Bài 5:

1,Tìm các số nguyên x,y thảo mãn x2+8y2+4xy-2x-4y=4

2,Cho đa thức h(x) bậc 4 ,hệ số của 3 cao nhất là 1 ,biết h(1)=2;h(2)=5;H(4)=17;H(-3)=10.Tìm đa thức h(x)

Bài 6:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1

1,Rút gọn biểu thức A

2,Tính A biết x thỏa mãn x3-4x2+3x=0

Bài 7:a,Cho a+b+c​​≠0 và a3+b3+c3=3abc.Tính N=\(\frac{a^{2016}+b^{2016}+c^{2016}}{\left(a+b+c\right)^{2016}}\)

b,Tìm số tự nhiên n để n2+4n+2013 là 1 số chính phương

Bai 8: Hình thang ABCD (AB//CD) có 2 đường chéo cắt nhau tại O .Đường thẳng qua O và song song với đáy AB cắt cạnh bên AD ,BC theo thứ tự ở M và N.

a, CMR OM=ON

b,CMR: \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)

c,Biết SAOB=20152(đvị diện tích );SCOD=20162(đvị diện tích ).Tính SABCD

Bài 9:Cho a,b,c là các số dương .Chứng minh bất đẳng thức :

\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}>hoacbang\frac{a+b+c}{2}\)

 

 

 

3
13 tháng 2 2020

áp dụng bđt cauchy-shwarz dạng engel

\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)

13 tháng 2 2020

Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Mà a+b+c khác 0 nên a = b = c

\(\Rightarrow N=1\)

23 tháng 10 2017

bài 4

a, x4+4y4

=x4+2.x2.2y2+4y4-2x2.2y2

=(x2+2y2)2-4x2y2

(HĐT số 1)

=(x2+2y2-2xy)(x2+2y2+2xy)

(HĐT số 3)

b, x(x+1)(x+2)(x+3)+1

=(x2+3x)(x2+3x+2)+1 (1)

Đặt x2+3x+1=a

( vì 1 là trung bình cộng của 2 và 0)

(1) = (a-1)(a+1)+1

=a2-1+1 =a2

(HĐT số 3)

=> (1) = (x2+3x+1)2

Bài 2: 

a: \(A=1999\cdot2001\)

\(=\left(2000-1\right)\left(2000+1\right)\)

\(=2000^2-1< 2000^2=B\)

Do đó: B lớn hơn

b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\)

\(=2^{16}-1< 2^{16}=D\)

Do đó: D lớn hơn

12 tháng 3 2017

kt 1 tiết thì ko có mấy cái đây đâu bạn

12 tháng 3 2017

kt hsg mà bn

4 tháng 11 2017

\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)

\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)

4 tháng 11 2017

kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)

b. \(\)-\(3x-4\)

Bài 1 Cho biểu thức A = \(\frac{5}{x+3}\)- \(\frac{2}{3-x}\)- \(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)a) Rút gon biểu thức Ab) Tính giá trị cua A khi\(|x-2=1|\)c) Tìm giá trị nguyên của x để A có giá trị nguyênBài 2Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua Ma) Chứng minh tứ giác ABCD là hình bình hành b) Gọi N là điểm đối xứng...
Đọc tiếp

Bài 1 

Cho biểu thức A = \(\frac{5}{x+3}\)\(\frac{2}{3-x}\)\(\frac{3x^{2^{ }}-2x-9}{x^2-9}\)( Với x \(\ne\)- 3 và x\(\ne\)3)

a) Rút gon biểu thức A

b) Tính giá trị cua A khi\(|x-2=1|\)

c) Tìm giá trị nguyên của x để A có giá trị nguyên

Bài 2

Cho tam giác ABC vuông tại A , gọi m là trung trung điểm của AC . Gọi D là điểm đối xứng với B qua M

a) Chứng minh tứ giác ABCD là hình bình hành 

b) Gọi N là điểm đối xứng với B qua A . Chứng minh tứ giác ACDN là hình chữ nhật

c) Kéo dài MN cắt BC tại I . Vẽ đường thẳng A song song với MN cắt BC ở K. Chứng minh : KC = 2BK

d) Qua B kẻ dduownfd thẳng song song với MN cắt AC kéo dài tại E. Tam giác ABC cần có thêm điều kiện gì để tứ giác EBMN là hình vuông

Bài 3

Cho a tthoar mãn a2 - 5a + 2 = 0 . Tính giá trị của biểu thức

P = a5 - a4 - 18a3 + 9a-5a + 2017 + (a4 - 40a2 + 4 ) : a2

giúp em với mai em nọp bài

em cảm ơn trước

 

1
20 tháng 3 2020

a) \(ĐKXĐ:x\ne\pm3\)

      \(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)

\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow A=\frac{-3x}{x+3}\)

b) Khi \(\left|x-2\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)

Thay x = 1 vào A, ta được :

\(A=\frac{-3}{1+3}=\frac{-3}{4}\)

Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)

c) Để \(A\inℤ\)

\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)

\(\Leftrightarrow-3x⋮x+3\)

\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)

\(\Leftrightarrow9⋮x+3\)

\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)

16 tháng 2 2017

\(x^2-4x+1\Rightarrow x^2=4x-1\Rightarrow A=\frac{4x-1-x+1}{x}=\frac{3x}{x}=3\)

16 tháng 2 2017

Câu 2 :

\(\frac{x^2+4}{x-1}=x+1+\frac{5}{x-1}\)

để \(\frac{x^2+4}{x-1}\) đạt giá trị nguyên thì x+1+\(\frac{5}{x-1}\) phải đạt giá trị nguyên => x-1 thuộc \(Ư_{\left(5\right)}\) =>x-1={-5;-1;1;5}

Ta có bảng sau

x-1

-5

-1 1 5

x

-4 0 2 6

Vậy x={ -4 ;0 ;2 ;6 ;}

Bài 1: 

a: \(3x\left(2x-1\right)^2-x\left(2x-1\right)=0\)

\(\Leftrightarrow x\left(2x-1\right)\left(6x-3-1\right)=0\)

=>x(2x-1)(6x-4)=0

hay \(x\in\left\{0;\dfrac{1}{2};\dfrac{2}{3}\right\}\)

b: \(\dfrac{1}{2}\left(x+1\right)^2-2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}x+\dfrac{1}{2}-2\right)=0\)

=>(x+1)(1/2x-3/2)=0

=>x=-1 hoặc x=3

c: \(\left(2x+1\right)^2-2x-1=0\)

=>(2x+1)(2x+1-1)=0

=>2x(2x+1)=0

hay \(x\in\left\{0;-\dfrac{1}{2}\right\}\)

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)