Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng bđt cauchy-shwarz dạng engel
\(\text{ Σ}_{cyc}\frac{a^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)\(=\frac{a+b+c}{2}\)
Ta có hđt \(\text{ Σ}_{cyc}a^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Mà a+b+c khác 0 nên a = b = c
\(\Rightarrow N=1\)
bài 4
a, x4+4y4
=x4+2.x2.2y2+4y4-2x2.2y2
=(x2+2y2)2-4x2y2
(HĐT số 1)
=(x2+2y2-2xy)(x2+2y2+2xy)
(HĐT số 3)
b, x(x+1)(x+2)(x+3)+1
=(x2+3x)(x2+3x+2)+1 (1)
Đặt x2+3x+1=a
( vì 1 là trung bình cộng của 2 và 0)
(1) = (a-1)(a+1)+1
=a2-1+1 =a2
(HĐT số 3)
=> (1) = (x2+3x+1)2
Bài 2:
a: \(A=1999\cdot2001\)
\(=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1< 2000^2=B\)
Do đó: B lớn hơn
b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=D\)
Do đó: D lớn hơn
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
a) \(ĐKXĐ:x\ne\pm3\)
\(A=\frac{5}{x+3}-\frac{2}{3-x}+\frac{3x^2-2x-9}{x^2-9}\)
\(\Leftrightarrow A=\frac{5\left(x-3\right)+2\left(x+3\right)-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{5x-15+2x+6-3x^2+2x+9}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{-3x}{x+3}\)
b) Khi \(\left|x-2\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=1\\2-x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Thay x = 1 vào A, ta được :
\(A=\frac{-3}{1+3}=\frac{-3}{4}\)
Vậy khi \(\left|x-2\right|=1\Leftrightarrow A=-\frac{3}{4}\)
c) Để \(A\inℤ\)
\(\Leftrightarrow\frac{-3x}{x+3}\inℤ\)
\(\Leftrightarrow-3x⋮x+3\)
\(\Leftrightarrow-3\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow9⋮x+3\)
\(\Leftrightarrow x+3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-4;0;-6;-12;6\right\}\)
\(x^2-4x+1\Rightarrow x^2=4x-1\Rightarrow A=\frac{4x-1-x+1}{x}=\frac{3x}{x}=3\)
Câu 2 :
\(\frac{x^2+4}{x-1}=x+1+\frac{5}{x-1}\)
để \(\frac{x^2+4}{x-1}\) đạt giá trị nguyên thì x+1+\(\frac{5}{x-1}\) phải đạt giá trị nguyên => x-1 thuộc \(Ư_{\left(5\right)}\) =>x-1={-5;-1;1;5}
Ta có bảng sau
x-1 |
-5 |
-1 | 1 | 5 |
x |
-4 | 0 | 2 | 6 |
Vậy x={ -4 ;0 ;2 ;6 ;}
Bài 1:
a: \(3x\left(2x-1\right)^2-x\left(2x-1\right)=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(6x-3-1\right)=0\)
=>x(2x-1)(6x-4)=0
hay \(x\in\left\{0;\dfrac{1}{2};\dfrac{2}{3}\right\}\)
b: \(\dfrac{1}{2}\left(x+1\right)^2-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{2}x+\dfrac{1}{2}-2\right)=0\)
=>(x+1)(1/2x-3/2)=0
=>x=-1 hoặc x=3
c: \(\left(2x+1\right)^2-2x-1=0\)
=>(2x+1)(2x+1-1)=0
=>2x(2x+1)=0
hay \(x\in\left\{0;-\dfrac{1}{2}\right\}\)
BÀI 1:
a) \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)
b) \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)
\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)
\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)
\(=\frac{x+2}{x-2}\)
c) \(A=0\) \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)
\(\Leftrightarrow\) \(x+2=0\)
\(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)
Vậy ko tìm đc x để A = 0
p/s: bn đăng từng bài ra đc ko, mk lm cho
bài 1
đặt a = n5 - n = n (n4 - 1) = n (n - 1) (n + 1) (n2 + 1)
n(n + 1) luôn chia hết cho 2 => a luôn chia hết cho 2
ta cần cm a chia hết cho 5 => có 2 trường hợp
th1: n chia hết cho 5 => a chia hết cho 5
th2: n ko chia hết cho 5 => n = 5k + b (với b = 1 ; 2 ; 3 ; 4)
với b = 1 => n - 1 = 5k
với b = 2 => n2 + 1 = (5k+2)2 + 1 = 25k2 + 20k + 5
=> a chia hết cho 5
với b=3 => n2 + 1 = (5k+3)2 +1 = 25k2 + 30k + 10
=> a chia hết cho 5
với b = 4 => n + 1 = 5k + 5
=> a chia hết cho 5
từ các th trên => a luôn chia hết cho 5
2 và 5 nguyên tố cùng nhau => a chia hết cho 00 => a tận cùng là 0
=> đpcm
bài 3
A = x4 - 2x3 + 3x2 - 4x + 2015
= (x2)2 - 2x2x + x2 + 2x2 - 4x + 2 + 2013
= (x2 - x)2 + 2(x - 1)2 +2013
có (x2 - x)2 và 2(x - 1)2 luôn lớn hơn hoặc = 0
=> A luôn lớn hơn hoặc = 2013
=> A min = 2013 tại (x2 - x)2 = 2(x - 1)2 = 0 <=> x = 1