Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
A = \(2\left(\frac{1}{10.18}+\frac{1}{18.26}+\frac{1}{26.34}+....+\frac{1}{802.810}\right)\)
\(=2.\frac{1}{8}\left(\frac{8}{10.18}+\frac{8}{18.26}+\frac{8}{26.34}+....+\frac{8}{802.810}\right)\)
\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{18}+\frac{1}{18}-\frac{1}{26}+\frac{1}{26}-\frac{1}{34}+....+\frac{1}{802}-\frac{1}{810}\right)\)
\(=\frac{1}{4}\left(\frac{1}{10}-\frac{1}{810}\right)=\frac{1}{4}\left(\frac{81}{810}-\frac{1}{810}\right)=\frac{1}{4}.\frac{80}{810}=\frac{1}{4}.\frac{8}{81}=\frac{2}{81}\)
Để  \(\frac{2n+1}{3n+2}\)là phân số tối giản thì 2n+1 và 3n+2 phải là 2 số ng.tố cùng nhau.Gọi d là ƯC của 2n+1 và 3n+2 Ta có :
\(\Rightarrow\)3(2n+1)|d và 2(3n+2)|\(\Rightarrow\)2(3n+2)-3(2n+1)|d\(\Rightarrow\)1|d
Ta thấy :1|d ngĩa là d\(\in\)Ư(1).Vậy hai số trên là ng.tố cùng nhau.Từ đó ta kết luận phân số trên là tối giản.
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
1,Gọi UCLN(n+1,n+2)=d
Ta có:n+1 chia hết cho d
n+2 chia hết cho d
=>(n+2)-(n+1) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy \(\frac{n+1}{n+2}\)tối giản
Bài 16*:
Giải
Gọi ƯCLN(2n+1;3n=2)=d
⇒2n+1 ⋮ d ⇒ 3.(2n+1) ⋮ d ⇒6n+3 ⋮ d
3n+2 ⋮ d 2.(3n+2) ⋮ d 6n+4 ⋮ d
⇒(6n+4)-(6n+3) ⋮ d
⇒ 1 ⋮ d
⇒ d=1
Vậy 2n+1/3n+2 là phân số tối giản.
Chúc bạn học tốt!
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
Vậy n \(\in\) {-2;4;6;12}
1) Gọi d= ƯCLN(2n +1; 3n+2)
=> 2n + 1 chia hết cho d => 3.(2n+1) chia hết cho d
3n+2 chia hết cho d => 2.(3n+2) chia hết cho d
=> 2.(3n+2) - 3.(2n+1) chia hết cho d
=> 1 chia hết cho d => d = 1 => 2n + 1 và 3n + 2 là nguyên tố cùng nhau => ps đã cho tối giản
2) Để A thuộc Z thì n+ 2 phải chia hết cho n - 5
=> (n+ 2) - (n-5) chia hết cho n - 5
=> 7 chia hết cho n - 5 hay n - 5 thuộc Ư(7) = {-1;1; 7;-7}
Vậy n $\in$∈ {-2;4;6;12}