Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
khi rút gọn 232323/292929 và 2323/2929 thì được 23/99
Vậy ta kết luận 3 phân số trên bắng nhau
Tk đi rồi mình giải tiếp cho
a,23/99 = 23.101/99.101=2323/9999
23/99 = 23.10101/99.10101=232323/999999
b, -3737/5151=-3737.101/5151.101=-373737/515151
c, tương tự thì cứ lấy phân số đầu .2 xong rồi .4
Có: 9909/ 8808= 9/8
29727/26424= 9/8
39636/35232=9/8
Vì 9/8= 9/8= 9/8
Suy ra: 9909/8808 = 29727/26424= 39636/35232
\(\frac{2323}{9999}=\frac{23.101}{99.101}=\frac{23}{99}\)
\(\frac{232323}{999999}=\frac{23.10101}{99.10101}=\frac{23}{99}\)
KL 3 phân số = nhau
Ta có:
-21:7/28:4 = -3/4
-39:13/52:13 = -3/4
Vì -3/4 = -3/4 nên -21/28 = -39/52
-1717:101/2323:101 = -17/23
-171717:10101/232323:10101 = -17/23
Vì -17/23 = -17/23 nên -1717/2323 = -171717/232323
\(\frac{2323}{9999}=\frac{2323:101}{9999:101}=\frac{23}{99}\)(1)
\(\frac{232323}{999999}=\frac{232323:10101}{999999:10101}=\frac{23}{99}\)(2)
Từ (1) và (2) =>\(\frac{23}{99}=\frac{2323}{9999}=\frac{232323}{999999}\)
a) Ta có:
\(\frac{232323}{999999}=\frac{23.10101}{99.10101}=\frac{23}{99}\)
Vì : \(\frac{23}{99}=\frac{23}{99}\\ =>\frac{23}{99}=\frac{232323}{999999}\)
b) \(-\frac{63}{84}=-\frac{3}{4}\\ \frac{65}{-91}=-\frac{5}{7}\)
Vì: \(-\frac{3}{4}< -\frac{5}{7}\\ =>-\frac{63}{84}< \frac{65}{-91}\)
c) Ta có: \(\frac{111}{115}=1-\frac{4}{115}\\ \frac{555}{559}=1-\frac{4}{559}\)
Vì: \(\frac{4}{115}>\frac{4}{559}\\ =>1-\frac{4}{115}< 1-\frac{4}{559}\\ =>\frac{111}{115}< \frac{555}{559}\)
a) \(\dfrac{23}{99}\) và \(\dfrac{232323}{999999}\)
* Giữ nguyên \(\dfrac{23}{99}\).
* Rút gọn \(\dfrac{232323}{999999}=\dfrac{23}{99}\).
Vì \(\dfrac{23}{99}=\dfrac{23}{99}\) nên \(\dfrac{23}{99}=\dfrac{232323}{999999}\)
Vậy \(\dfrac{23}{99}=\dfrac{232323}{999999}\).
b) \(\dfrac{-63}{84}\) và \(\dfrac{65}{-91}\)
\(\circledast\) Rút gọn:
\(\dfrac{-63}{84}=\dfrac{-3}{4}\) ; \(\dfrac{65}{-91}=\dfrac{-5}{7}\)
\(\circledast\) Quy đồng:
Mẫu chung: 28
\(\dfrac{-3}{4}=\dfrac{-3.7}{4\cdot7}=\dfrac{-21}{28}\)
\(\dfrac{-5}{7}=\dfrac{-5\cdot4}{7\cdot4}=\dfrac{-20}{28}\)
Vì \(\dfrac{-21}{28}< \dfrac{-20}{28}\) nên \(\dfrac{-63}{84}< \dfrac{65}{-91}\).
Vậy \(\dfrac{-63}{84}< \dfrac{65}{-91}\).
c) \(\dfrac{111}{115}\) và \(\dfrac{555}{559}\)
\(\dfrac{111}{115}=1-\dfrac{4}{115}\) ; \(\dfrac{555}{559}=1-\dfrac{4}{559}\)
Vì \(\dfrac{4}{115}>\dfrac{4}{559}\)
\(\Rightarrow\) \(1-\dfrac{4}{115}< 1-\dfrac{4}{559}\)
\(\Rightarrow\) \(\dfrac{111}{115}< \dfrac{555}{559}\)
Vậy \(\dfrac{111}{115}< \dfrac{555}{559}\).
2)
S = \(\dfrac{6}{2.5}\) + \(\dfrac{6}{5.8}\) + ... + \(\dfrac{6}{26.29}\)+ \(\dfrac{6}{29.32}\)
= 2.\(\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{29.32}\right)\)
= \(2.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{29}-\dfrac{1}{32}\right)\)
= 2.\(\left(\dfrac{1}{2}-\dfrac{1}{32}\right)\)
= 1 - \(\left(2.\dfrac{1}{32}\right)\)< 1
Vậy S < 1
a.Ta có \(\dfrac{2323}{9999}=\dfrac{2323:101}{9999:101}=\dfrac{23}{99}\)
\(\dfrac{232323}{999999}=\dfrac{232323:10101}{999999:10101}=\dfrac{23}{99}\)
Vậy\(\dfrac{23}{99}=\dfrac{2323}{9999}=\dfrac{232323}{999999}\)(Vì cùng bằng \(\dfrac{23}{99}\))
\(\dfrac{2323}{9999}=\dfrac{2323:101}{9999:101}=\dfrac{23}{99}\)
\(\dfrac{232323}{999999}=\dfrac{232323:10101}{999999:10101}=\dfrac{23}{99}\)
cứ thế mà làm