Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x)
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1]
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4
Vay gia tri nho nhat P=4 khi x=1
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4]
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2
Vay gia tri nho nhat Q= -9/2 khi x= 3/2
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4
= ( x-1/2)^2 + (y+3)^2 +3/4
M>= 3/4
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7]
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7
Vay GTLN A=7 khi x=2
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4]
GTLN B= 1/4 khi x=1/2
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4)
= -2[(x-1/2)^2 +9/4]
GTLN N= -9/2 khi x=1/2
Bài 1:
Ta có:
VT=\(\left(a^2+b^2\right)\left(c^2+d^2\right)\)
=\(a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
=\(\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)\)
=\(\left(ac+bd\right)^2+\left(ad-bc\right)^2\) = VP
Vậy đẳng thức được chứng minh
Bài 2:
a/P=\(x^2-2x+5\)
=\(\left(x^2-2x+1\right)+4\)
=\(\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow P\ge4\forall x\)
Vậy GTNN của P là 4 khi \(\left(x-1\right)^2=0\) hay x=1
b/Q=\(2x^2-6x\)
=\(2\left(x^2-3x\right)\)
=\(2\left(x^2-3x+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
=\(2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vì \(\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\forall x\)
\(\Rightarrow Q\ge-\dfrac{9}{2}\forall x\)
Vậy GTNN của Q là \(-\dfrac{9}{2}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\) hay \(x=\dfrac{3}{2}\)
c/\(M=x^2+y^2-x+6y+10\)
=\(x^2-x+\dfrac{1}{4}+y^2+6y+9+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Vì \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)
\(\Rightarrow M\ge\dfrac{3}{4}\forall x,y\)
Vậy GTNN của M là \(\dfrac{3}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\) và \(\left(y+3\right)^2=0\) hay \(x=\dfrac{1}{2}\) và y = -3
Bài 3:
a/Đặt A=\(x^2-6x+10\)
A=\(x^2-6x+9+1=\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\ge0\forall x\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)
\(\Rightarrow A>0\forall x\)
\(\Rightarrow x^2-6x+10>0\forall x\)
b/Đặt B=\(4x-x^2-5\)
B=\(-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)
Vì \(\left(x-2\right)^2\ge0\forall x\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1< 0\forall x\)
\(\Rightarrow B< 0\forall x\)
\(\Rightarrow4x-x^2-5< 0\forall x\)
cho tớ hỏi là ở câu b, bài 2 í cậu lấy 9/4 ở đâu vậy ???
a) \(x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\)
MIN P = 4 khi \(x-1=0=>x=1\)
b) \(2x^2-6x\)
\(=2\left(x^2-3x\right)\)
\(=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\)
\(=\frac{-18}{4}+2\left(x^2-\frac{3}{2}\right)^2\le\frac{-18}{4}\)
MIN Q = \(\frac{-18}{4}\)khi \(x^2-\frac{3}{2}=0\)
\(=>x^2=\frac{3}{2}\)
\(=>\orbr{\begin{cases}x=-\sqrt{\frac{3}{2}}\\x=\sqrt{\frac{3}{2}}\end{cases}}\)
Ủng hộ nha
a) P=x^2-2x+5
=x2-2x+1+4
=(x-1)2+4
Ta thấy;\(\left(x-1\right)^2+4\ge0+4=4\)
Dấu = <=>x-1=0 =>x=1
Vậy...
a) P= x2 -2x +1 +4 = (x-1)2 +4
Ta có: (x-1)2>= 0
\(\Rightarrow\) (x-1)2 +4 >= 4
GTNN của P=4 khi x= 1
c) M= (x2-x+1/4)+(y2+6y+9)+3/4 = (x-1/2)2 + (y+3)2 +3/4
Ta có: (x-1/2)2 + (y+3)2 >= 0
\(\Rightarrow\) (x-1/2)2 + (y+3)2 +3/4 >= 3/4
GTNN của Q=3/4 khi x=1/2 ; y=-3
b) Q= 2(x2-3x) = 2(x2-3x+9/4)-9/2 = 2.(x-3/2)2-9/2
ta có 2.(x-3/2)2 >=0
\(\Rightarrow\) 2.(x-3/2)2-9/2>= -9/2
GTNN của Q=-9/2 khi x=3/2
a/Q = 2x2 - 6x => 2Q = 4x2 - 12x =>2Q = 4x2 - 12x + 9 - 9 => 2Q = (2x- 3)2 - 9 \(\ge\)-9 => Q\(\ge\)-4,5
Đẳng thức xảy ra khi: (2x - 3)2 = 0 => x = 1,5
Vậy GTNN của Q là -4,5 khi x = 1,5
b/ M = x2 + y2 - x + 6y + 10
=> M = x2 + y2 - x + 6y + 0,25 + 9 + 0,75
=> M = (x2 - x + 0,25) + (y2 + 6y + 9) + 0,75
=> M = (x - 0,5)2 + (y + 3)2 + 0,75\(\ge\)0,75
Đẳng thức xảy ra khi: (x - 0,5)2 = 0 và (y + 3)2 = 0 => x = 0,5 và y = -3
Vậy GTNN của M là 0,75 khi x = 0,5 và y = -3
Bài 1:
Ta có: \(4x-x^2-5\)
\(=-x^2+4x-5=-x^2+4x-4-1\)
\(=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2< 0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1< 0\forall x\)
\(\Rightarrow4x-x^2-5< 0\forall x\)
Bài 1:
\(4x-x^2-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-2.x.2+4+1\right)\)
\(=-\left(x-2\right)^2-1\)
Vì \(-\left(x-2\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-2\right)^2-1\le-1\)
\(\Rightarrow4x-x^2-5< 0\) với mọi x
Bài 2:
a) \(M=x^2+y^2-x+6y+10\)
\(M=x^2-2.x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+y^2+2.y.3+9-9+10\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\left(y+3\right)^2\ge0\) với mọi y
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow Mmin=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
b) \(Q=2x^2-6x\)
\(Q=2\left(x^2-3x\right)\)
\(Q=2\left(x^2-2.x\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)
\(Q=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)
Vì \(2\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(\Rightarrow Qmin=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)