K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2020

1) \(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)

2) \(B=x^2+6x+11=\left(x+3\right)^2+2\ge2>0\left(\forall x\right)\)

3) \(C=4x^2+4x-2=\left(2x+1\right)^2-2\ge-2\) chưa chắc nhỏ hơn 0

4) \(D=-x^2-6x-11=-\left(x+3\right)^2-2\le-2< 0\left(\forall x\right)\)

5) \(E=-4x^2+4x-2=-\left(2x-1\right)^2-1\le-1< 0\left(\forall x\right)\)

23 tháng 8 2020

1. \(A=x^2+2x+2=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(x+1\right)^2+1\ge1\)

=> Đpcm

2. \(B=x^2+6x+11=\left(x+3\right)^2+2\)

Vì \(\left(x+3\right)^2\ge0\forall x\)\(\Rightarrow\left(x+3\right)^2+2\ge2\)

=> Đpcm

3. \(C=4x^2+4x-2=-\left(4x^2-4x+2\right)\)

\(=-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\)

Vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\Rightarrow4\left(x-\frac{1}{2}\right)^2+1\ge1\)

\(\Rightarrow-\left(4\left(x-\frac{1}{2}\right)^2+1\right)\le1\)

=> Đpcm

4,5 làm tương tự

9 tháng 9 2018

a ) \(2x^2-5x+4\)

\(=2\left(x^2-\dfrac{5}{2}x+2\right)\)

\(=2\left(x^2-2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{7}{16}\right)\)

\(=2\left[\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{16}\right]\)

\(=2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\)

Do\(2\left(x-\dfrac{5}{4}\right)^2\ge0\forall x\Rightarrow2\left(x-\dfrac{5}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}>0\left(đpcm\right)\)

b ) \(-x^2+4x-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)\)

\(=-\left[\left(x-2\right)^2+1\right]\)

\(=-\left(x-2\right)^2-1\)

Do \(-\left(x-2\right)^2\le0\forall x\Rightarrow-\left(x-2\right)^2-1\le-1< 0\left(đpcm\right)\)

c ) Sai đề : Đây là đề theo cách sửa của mik :

\(-4+3x-3x^2\)

\(=-3\left(x^2-x+\dfrac{4}{3}\right)\)

\(=-3\left(x^2-x+\dfrac{1}{4}+\dfrac{13}{12}\right)\)

\(=-3\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{13}{12}\right]\)

\(=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\)

Do \(-3\left(x-\dfrac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{13}{4}\le\dfrac{-13}{4}< 0\left(đpcm\right)\)

9 tháng 8 2017

a, \(A=-5x^2+10x-7=-5\left(x^2-2x+1\right)^2-2=-5\left(x-1\right)^2-2< 0\)

\(\Rightarrowđpcm\)

b, \(B=-x^2+x-\dfrac{1}{4}\)

\(=-\left(x^2-\dfrac{1}{2}.x.2+\dfrac{1}{4}\right)=-\left(x-\dfrac{1}{2}\right)^2\le0\)

c, \(C=-4x^2+4x-3=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2< 0\)

\(\Rightarrowđpcm\)

9 tháng 8 2017

Sao câu a phía cuối lại trừ 2 vậy bạn

8 tháng 8 2017

a, \(A=2x^2+4x+5=2x^2+4x+2+3\)

\(=2\left(x+1\right)^2+3>0\)

\(\Rightarrowđpcm\)

b, \(B=-3x^2+6x-7=-3x^2+6x-3-4\)

\(=-3\left(x-1\right)^2-4< 0\)

\(\Rightarrowđpcm\)

8 tháng 8 2017

\(A=2x^2+4x+5\)

\(\Rightarrow A=2x^2+4x+2+3\)

\(\Rightarrow A=2\left(x+1\right)^2+3\)

\(\Rightarrow A>0\left(ĐPCM\right)\)

20 tháng 10 2015

\(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\)

 \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\)mà \(1>0\) nên \(\left(x-2\right)+1>0\)

Vậy \(x^2-4x+5>0\)

 

\(6x-x^2-10=-x^2+6x-9-1=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\)

Vì   \(-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2-1\le-1\)mà \(-1<0\)  Nên  \(-\left(x-3\right)^2-1<0\)

Vậy  \(6x-x^2-10<0\)

31 tháng 8 2020

x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )

x2 - x + 1 = ( x2 - x + 1/4 ) + 3/4 = ( x - 1/2 )2 + 3/4 ≥ 3/4 > 0 ∀ x ( đpcm )

x2 + 4x + 7 = ( x2 + 4x + 4 ) + 3 = ( x + 2 )2 + 3 ≥ 3 > 0 ∀ x ( đpcm )

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

-x2 - x - 1 = -( x2 + x + 1/4 ) - 3/4 = -( x + 1/2 )2 - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

-4x2 - 4x - 2 = -4( x2 + x + 1/4 ) - 1 = -4( x + 1/2 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )

17 tháng 7 2019

a) \(x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1>0\forall x\)

b) \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x+2\right)^2-1\le-1\le0\forall x\)

(đpcm)

17 tháng 7 2019

nhầm câu b tí: \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)\)

\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)

(đpcm) (sửa dấu + thành - thôi:v)