Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1+4+42+43+...+4100
4B=4+42+43+44+...+4101
4B-B=(4+42+43+44+...+4101)-(1+4+42+43+...+4100)
3B=4101-1
B=\(\frac{4^{101}-1}{3}\)
câu chứng minh nè: http://olm.vn/hoi-dap/question/96710.html nhập link vào nha
câu còn lại có lẽ trong câu hỏi tương tự có
4,Tìm a, b ∈N, biết:
a,10a+168=b2
b,100a+63=b2
c,2a+124=5b
d,2a+80=3b
Giải:
a) xét \(a=0\)
\(\Rightarrow10^a+168=1+168=169=13^2\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)
xét \(a\ne0\)
=>10a có tận cùng bằng 0
Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9 )
=>không có b
vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)
b)Chứng minh tương tự câu a)
c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5
\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5
Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0
ta có :
2^0 + 124 = 5^b
=> 125 = 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b =3
d)Chứng minh tương tự như 2 câu mẫu trên
3,Cho B=34n+3+2013
Chứng minh rằng B⋮10 với mọi n∈N
Giải:
Ta có :
34n+3+2013
=(34)n+27+2013
=81n+2040
Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc
a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )
b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)
=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)
Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1
3.
\(A=1-3+3^2-3^3+...-3^{2009}-3^{2010}\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}\)
\(\Rightarrow4A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}+\left(1-3+3^2-3^3+...-3^{2009}+3^{2010}\right)\)\(\Rightarrow4A=3^{2011}-1\)
\(\Rightarrow4A=3^{2011}\)
\(\Rightarrow\)ĐPCM
mik đg cần gấp câu 1 và câu 2 câu 3 mik lm đk r mơn bn nhé nhưng bn có thể giúp mik câu 1 và câu 2 k?
thế bài này bạn hỏi hay là tớ hỏi vậy
cậu chẳng ghi đề bài thì ai làm
CMR a, 30002009-1\(⋮\)2009
b, 30002009+1\(⋮\)3001
Help me!!!!!!!!!!!!!!!!!!!!Chìu mai mik ddi nd rùi
Ta có:
9999931999 = 9999931996 . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )
\(\Rightarrow\) 9999931999 có tận cùng là 7
5555571997 = 555557 . 5555571996 = 555557 . ( 5555574 )499 = 555557 . ( ....1)499
=> 5555571997 có tận cùng là 7
A = 9999931999 - 5555571997
A = ( .....7 ) - ( .....7 )
A= ( .....0)
=> A có tận cùng là 0
=> \(A⋮5\)
Bài 3 :
Cách 1 :
Ta có:
A = 99999311999- 5555571997
= 9999931998 .999993 - 5555571996 . 555557
= (9999932)999 .999993 - (5555572 ) 998 . 555557
=(...9)999 .999993 - (...9)998 .555557
= (...9). 999993 - (...1).555557
=(...7)-(...7) =(...0)
Chữ số tận cùng của A= 9999931999 -5555531997 là 0.
=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.