\(⋮3\)

2)Chúng minh rằng (20092009-...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 12 2015

B=1+4+42+43+...+4100

4B=4+42+43+44+...+4101

4B-B=(4+42+43+44+...+4101)-(1+4+42+43+...+4100)

3B=4101-1

B=\(\frac{4^{101}-1}{3}\)

câu chứng minh nè: http://olm.vn/hoi-dap/question/96710.html         nhập link vào nha

câu còn lại có lẽ trong câu hỏi tương tự có

 

 

 

7 tháng 12 2015

anh_hung_lang_la boc phet vua

4,Tìm a, b N, biết:

a,10a+168=b2

b,100a+63=b2

c,2a+124=5b

d,2a+80=3b

 Giải:

a) xét \(a=0\)

\(\Rightarrow10^a+168=1+168=169=13^2\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=13\end{cases}}\)

xét \(a\ne0\)

=>10a có tận cùng bằng 0

Mà 10a+168 có tận cùng bằng 8 không phải số chính phương ( các số chính phương chỉ có thể tận cùng là:0;1;4;5;6;9  )

=>không có b

vậy \(\hept{\begin{cases}a=0\\b=13\end{cases}}\)

b)Chứng minh tương tự câu a)

c) \(5^b\)là số lẻ với b là số tự nhiên và tận cùng là 5

\(\Rightarrow2^a+124\)cũng là số lẻ và tận cùng là 5

Mà \(2^a+124\) là số lẻ khi và chỉ khi a=0

ta có :

2^0 + 124 = 5^b

=> 125 = 5^b

=> 5^3 = 5^b

=> b = 3

Vậy a = 0 ; b =3

d)Chứng minh tương tự như 2 câu mẫu trên

3,Cho B=34n+3+2013

Chứng minh rằng B10 với mọi nN

Giải:

Ta có : 

34n+3+2013

=(34)n+27+2013

=81n+2040

Phần sau dễ rồi ,mk nghĩ bạn có thể giải đc

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

7 tháng 3 2017

3.

\(A=1-3+3^2-3^3+...-3^{2009}-3^{2010}\)

\(\Rightarrow3A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}\)

\(\Rightarrow4A=3-3^2+3^3-3^4+...-3^{2010}+3^{2011}+\left(1-3+3^2-3^3+...-3^{2009}+3^{2010}\right)\)\(\Rightarrow4A=3^{2011}-1\)

\(\Rightarrow4A=3^{2011}\)

\(\Rightarrow\)ĐPCM

7 tháng 3 2017

mik đg cần gấp câu 1 và câu 2 câu 3 mik lm đk r mơn bn nhé nhưng bn có thể giúp mik câu 1 và câu 2 k?khocroi

thế bài này bạn hỏi hay là tớ hỏi vậy 

cậu chẳng ghi đề bài thì ai làm  

ờ ha mik sửa lại rồi đó

1 tháng 1 2019

Ta có:

 9999931999 =  9999931996  . 9999933 = (9999934)499 . 9999933 = (.....1)499 . (.....7 )

\(\Rightarrow\) 9999931999 có tận cùng là 7

5555571997 =  555557 . 5555571996 =  555557 . ( 5555574 )499 = 555557 . ( ....1)499

=> 5555571997 có tận cùng là 7

A = 9999931999 - 5555571997 

A = ( .....7 ) - ( .....7 )

A= ( .....0)

=> A có tận cùng là 0

=>  \(A⋮5\)

Bài 3 :

Cách 1 :

Ta có:

A = 99999311999- 5555571997 

   = 9999931998 .999993 - 5555571996 . 555557

= (9999932)999 .999993 - (5555572 ) 998 . 555557

=(...9)999 .999993 - (...9)998 .555557

= (...9). 999993 - (...1).555557

=(...7)-(...7) =(...0)

Chữ số tận cùng của A= 9999931999 -5555531997 là 0.

=> A= 9999931999 -5555531997 chia hết cho 5. =>đpcm.