Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1: Ta co 3 số tư nhiên liên tiếp là a; a+1 ; a+2
tổng 3 số tự nhiên liên tiếp là a+ (a+1) + (a+2)= 3a+3 =3(a+1) chia hết cho 3
Câu 2: không đúng
vì 4 số tự nhiên là a; (a+1) ; ( a+2); (a+3) thì tổng 4 số tự nhiên liên tiếp là: a+ (a+1) + ( a+2)+ (a+3)= 4a+6= 2(2a+3)
vì số (2a+3) là số lẻ không chia hết cho 2 nên số 2(2a+3) không chia hết cho 4
Câu 3:
a) Ta có S= 1+3+32+33+........348+349= (1+3)+32(1+3)+......348(1+3)=(1+3)(1+32+.....348)=4(1+32+.....348) chia hết cho 4
b) Từ câu a ta có S= 4(1+32+33+....348) làm tương tự câu a ta có S= 4.4(1+3+32+...347) =..............= 4.4.4.......(1+3)= 449
Số 4 có mũ là lẻ thì tận cùng là số 4 có số mũ chẵn tận cùng là số 6
Vậy S có tần cùng là số 4
a/ Gọi 3 số nguyên liên tiếp là a; a+1; a+2.
Theo GT ta có : \(a+\left(a+1\right)+\left(a+2\right)=3a+3\)
=3(a+1) \(⋮3\)(vì \(3⋮3\))
Vậy tổng ba số nguyên liên tiếp là số chia hết cho 3.
b/ Gọi 4 số cần tìm là a ; a+1; a+2 ; a+3
Theo Gt ta có :a+(a+1)+(a+2)+(a+3) = 4a+6
=2(2a+3)\(⋮̸4\)( vì số chia hết cho 2 chưa chắc chia hết cho 4)
Vậy tổng của 4 số nguyên liên tiếp không chia hết cho 4.
a) 3 số liên tiếp là: n, n+1, n+2. ( n thuộc N )
Ta có: n + (n+1) + (n+2)= 3n+3 = 3(n+1) chia hết cho 3
b) 4 số liên tiếp: n, n+1, n+2, n+3 (n thuộc N )
Ta có: n+(n+1)+(n+2)+(n+3)= 4n+6 ko chia hết cho 4 vì: 4n chia hết cho 4 nhưng 6 ko chia hết cho 4.
hai số tự nhiên liên tiếp có 1 số lẻ và 1 số chẵn
mà số chẵn thì chia hết cho 2
trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
ví dụ :
1 , 2 , 3
59 , 60 , 61
.........
nhé !
a ) 2 stn liên tiếp có dạng : n và n + 1
nếu n chẵn suy ra n chẵn chia hết cho 2
nếu n lẻ n +1 là chẵn chia hết cho 2
b) 3 stn liên tiếp có dạng : n ; n+1 ;n+2
suy ra 3n + 3 chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2
TH1 nếu a chia hết cho 3
=> a có dạng 3k
=>a+1=3k+1(ko chia hết cho 3)
=>a+2=3k+2(ko chia hết cho 3)
Vậy trong 3 số chỉ có duy nhất 1 số a chia hết cho 3
TH2 a+1 chia hết cho 3
=>a+1 có dạng 3k
=>a=3k-1 (ko chia hết cho 3)
=>a+2=3k+1(ko chia hết cho 3)
=>Vậy trong 3 số chỉ có duy nhất 1 số a+1 chia hết cho 3
TH3 (làm tương tự nha bạn)
b,Tick rồi mình làm tiếp cho
a, Gọi 2 số đó là a,b
Gia sử a,b cùng chia 3 dư r
=> a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r - (3q+r) = 3k-3q = 3.(k-q) chia hết cho 3
b, Áp dụng nguyên lí điricle thì trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích của chúng chia hết cho 2
Tk mk nha
1. gọi 3 stn liên tiếp là n,n+1,n+2
ta có n+n+1+n+2 = 3n +3 = 3(n+1) : hết cho 3
2. gọi 4 stn liên tiếp là n,n+1,n+2,n+3
ta có n+n+1+n+2+n+3 = 4n+6
vì 4n ; hết cho 4 mà 6 : hết cho 4
=> 4n+6 ko : hết cho 4
3. gọi 2 stn liên tiếp đó là a,b
ta có a=5q + r
b=5q1 +r
a-b = ( 5q +r) - (5q1+r)
= 5q - 5q1
= 5(q-q1) : hết cho 5