Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
>> Mình không chép lại đề bài nhé ! <<
Cách 1 :
\(A=\left(\dfrac{36-4+3}{6}\right)-\left(\dfrac{30+10-9}{6}\right)-\left(\dfrac{18-14+15}{6}\right)=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}=-\dfrac{15}{6}=-\dfrac{5}{2}\)
Cách 2 :
\(A=6-\dfrac{2}{3}+\dfrac{1}{2}-5+\dfrac{5}{3}-\dfrac{3}{2}-3-\dfrac{7}{3}+\dfrac{5}{2}\)
\(A=\left(6-5-3\right)-\left(\dfrac{2}{3}+\dfrac{5}{3}-\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}-\dfrac{5}{2}\right)\)
\(A=-2-0-\dfrac{1}{2}=-\dfrac{5}{2}\)
Cách 1 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=\left(\dfrac{36}{6}-\dfrac{4}{6}+\dfrac{3}{6}\right)-\left(\dfrac{30}{6}+\dfrac{10}{6}-\dfrac{9}{6}\right)-\left(\dfrac{18}{6}-\dfrac{14}{6}+\dfrac{15}{6}\right)\)
\(=\dfrac{35}{6}-\dfrac{31}{6}-\dfrac{19}{6}\)
\(=-\dfrac{5}{2}\)
Cách 2 :
\(\left(6-\dfrac{2}{3}+\dfrac{1}{2}\right)-\left(5+\dfrac{5}{3}-\dfrac{3}{2}\right)-\left(3-\dfrac{7}{3}+\dfrac{5}{2}\right)\)
\(=6-\dfrac{2}{3}+\dfrac{1}{2}-5-\dfrac{5}{3}+\dfrac{3}{2}-3+\dfrac{7}{3}-\dfrac{5}{2}\)
\(=\left(6-5-3\right)+\left(\dfrac{-2}{3}+\dfrac{-5}{3}+\dfrac{7}{3}\right)+\left(\dfrac{1}{2}+\dfrac{3}{2}+\dfrac{-5}{2}\right)\)
\(=\left(-2\right)+0+\dfrac{-1}{2}\)
\(=\dfrac{-5}{2}\)
Ta có : \(\frac{a}{b}=\frac{10}{3}\Rightarrow\frac{a}{10}=\frac{b}{3}\)
Đặt \(\frac{a}{10}=\frac{b}{3}=k\Rightarrow\left\{\begin{matrix}a=10k\\b=3k\end{matrix}\right.\)
Thay \(a=10k\) và \(b=3k\) vào biểu thức \(A=\frac{3\cdot a-2\cdot b}{a-3\cdot b}\), ta được :
\(A=\frac{3\cdot10k-2\cdot3k}{10k-3\cdot3k}=\frac{30k-6k}{10k-9k}=\frac{24k}{k}=24\)
Vậy \(A=24\)
a) (4x2)2(-5y3)(-xy)2
= 42x4(-5)y3x2y2
=(-5.16)(x4.x2)(y3.y2)
= -80x6y5
Phần hệ số là -80
Phần biến là x6y5
Bậc của đơn thứ là 11
b) (x2y)(-1/2axz)2(xyz)3
= x2y 1/4a2x2z2x3y3z3
= 1/4a2(x2x2x3)(yy3)(z2z3)
= 1/4a2x7y4z5
Phần hệ số là 1/4a2
Phần biến là x7y4z5
Bậc của đơn thức là 16
\(C=\frac{5x^2+3y^2}{10x^2-3y^2}\)
Có \(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x}{y}=\frac{3}{5}\)
Thay \(x=3;y=5\) ta có : \(\frac{5x^2+3y^2}{10x^2-3y^2}=\frac{5\cdot3^2+3\cdot5^2}{10\cdot3^2-3\cdot5^2}=8\)
Vậy \(C=8\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\) \(\begin{cases} a = bk \\ c = dk \end{cases}\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(1\right)\)
\(\dfrac{a.c}{b.d}=\dfrac{bk.dk}{b.d}=\dfrac{k^2.b.d}{b.d}=k^2\left(2\right)\)
Từ (1) và (2) suy ra: \(\dfrac{a.c}{b.d}=\dfrac{a^2+c^2}{b^2+d^2}\) \(\rightarrow đpcm\).
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\Rightarrow\)\(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{\left(a+b\right)+\left(a-b\right)}{\left(c+a\right)+\left(c-a\right)}=\dfrac{2a}{2c}=\dfrac{a}{c}\left(1\right)\)
Mặt khác: \(\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{\left(a+b\right)-\left(a-b\right)}{\left(c+a\right)-\left(c-a\right)}=\dfrac{2b}{2a}=\dfrac{b}{a}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{a}{c}=\dfrac{b}{a}\Rightarrow a^2=bc\)