Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét 10001 số hạng 2019,20192,...,201910001
Theo nguyên lí Dirichlet co 2 số có cùng số dư khi chia co 10000
Gọi 2 số đó là 2019m và 2019n(m,n là số tự nhiên, m>n)=> 2019m-2019n=....0000
Vậy............
1số tự nhiên khi chia cho 2015 thì chỉ có thể dư một trong 2015 số:0;1;2;3;...;2014.
Mà có 2016 số nên theo nguyên lý Dirichlet bao giờ cũng tồn tại ít nhất 2 phép chia( 2 số trong tổng số 2016 số ) có cùng số dư khi chia cho 2015. Hiệu 2 số đó chia hết cho 2015( đpcm ).
TICK CHO MÌNH NHA.
Trong 11 số tự nhiên bất kỳ, số dư của chúng khi chia cho 10 có 10 chữ số sau : 0;1;2;3;4;5;6;7;8 và 9.
Có 11 số nhưng chỉ có 10 số dư
=> Có ít nhất 2 số trong 11 số đó có cùng số dư khi chia cho 10.
Vậy hiệu 2 số này sẽ chia hết cho 10.
Mà những số có chữ số tận cùng là 0 thì chia hết cho 10
=> Trong 11 STN bất kỳ luôn có 2 số có chữ số tận ucngf giống nhau.
Vậy .....
CĂN CỨ VÀO CÁC YẾU TỐ SAU
-KHÍ HẬU
-LOẠI CÂY
-TÌNH HÌNH PHÁT SINH SÂU BỆNH Ở MỖI ĐỊA PHƯƠNG
Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé
1)
Xét 2004 số đề kết thúc là 4 chữ số 2002 :
20022002; 200220022002 ; ...; 20022002...2002
| 2005 cụm 2002 |
Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.
Gọi 2 số đó là 20022002...2002; 200220022002...2002
| n cụm 2002 | |m cụm 2002| \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.
Suy ra :
200220022002...2002 - 20022002...2002 chia hết cho 2003
| m cụm 2002 | | n cụm 2002 |
= 20022002...200220020000000...0000 chia hết cho 2003
| m - n cụm 2002 | | 4n chữ số 0 |
\(\Rightarrow200220022002...2002.10^{4n}\) chia hết cho 2003
| m - n cụm 2002 |
Mà (10;2003) = 1 nên (104n;2003)=1
Suy ra 200220022002...2002 chia hết cho 2003
| m - n cụm 2002 |
Số này kết thúc là ...2002