Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab\left(x-y\right)^3-8ab=ab\left[\left(x-y\right)^3-2^3\right]=ab\left(x-y-2\right)\left[\left(x-y\right)^2+2\left(x-y\right)+4\right]\)
\(36x^2-y^2+6y-9=36x^2-\left(y-3\right)^2=\left(6x-y+3\right)\left(6x+y-3\right)\)
\(8x^2+10x-3=0\)
\(8x^2-2x+12x-3=0\)
\(2x\left(4x-1\right)+3\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(2x+3\right)=0\)
\(\left[\begin{array}{nghiempt}4x-1=0\\2x+3=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}4x=1\\2x=-3\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{4}\\x=-\frac{3}{2}\end{array}\right.\)
\(\left(2x-5\right)^2-\left(x+4\right)^2=0\)
\(\left(2x-5+x+4\right)\left(2x-5-x-4\right)=0\)
\(\left(3x-1\right)\left(x-9\right)=0\)
\(\left[\begin{array}{nghiempt}3x-1=0\\x-9=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=9\end{array}\right.\)
a,Từ x + y = 2\(\Rightarrow\)x2 + 2xy + y2 = 4
\(\Rightarrow\)2xy= 4 - (x2 + y2 ) = 4 - 10 = -6
\(\Rightarrow\)xy = -3
Ta lại có (x+y)3= x3+3x2y + 3xy2+y3
\(\Rightarrow\)x3+y3=(x+y)3-3xy(x+y)=8+9.2=26
b, Đây là cách giải tổng quát của câu a:
x3+y3=(x+y)(x2-xy+y2)=a(b-xy) (1)
Lại có: x+y=a\(\Rightarrow\)x2+2xy+y2=a2
\(\Rightarrow\)xy=\(\dfrac{a^2-\left(x^2+y^2\right)}{2}=\dfrac{a^2-b}{2}\)(2)
Từ (1) và (2) ta dễ dàng tính được:
x3+y3=\(\dfrac{a\left(3b-a^2\right)}{2}\)
Chúc các bạn học tốt
a) x + y = 2 => y = 2 - x
x2 + y2 = 10
=> x2 + (2 - x)2 = 10
<=> x2 + 4 - 4x + x2 = 10
<=> 2x2 - 4x - 6 = 0
<=> x = 3 -> y = -1
hoặc x = -1 -> y = 3
TH1: x3 + y3 = 33 + (-1)3
TH2: x3 + y3 = (-1)3 + 33
Ta có \(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-xy-3xy+3y^2=0\)
\(\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-y=0\\x-3y=0\end{cases}}\)
Vì x>y nên \(x-y\ne0\)\(\Rightarrow x-3y=0\Rightarrow x=3y\)
A= \(\frac{2x+5y}{x-2y}=\frac{11y}{y}=11\)
cho mk sửa lại đề chút nhoa:
b, Cho x+y=a và x2+y2=b. Tính x3+y3 theo a và b
a.Từ \(x+y=2\Rightarrow\left(x+y\right)^2=4\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow10+2xy=4\Rightarrow xy=-3\)
Ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=2.\left[\left(x+y\right)^2-2xy-xy\right]\)
=\(2.\left[2^2-3.xy\right]=2.\left[4-3.\left(-3\right)\right]=26\)
b.Từ \(x-y=a\Rightarrow\left(x-y\right)^2=a^2\Rightarrow x^2-2xy+y^2=a^2\)
\(\Rightarrow b-2xy=a^2\Rightarrow xy=\frac{b-a^2}{2}\)
Ta có \(x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=a.\left[\left(x-y\right)^2+3xy\right]\)
\(=a.\left[a^2+3.\frac{b-a^2}{2}\right]=a.\frac{2a^2+3b-3a^2}{2}=\frac{-a^3+3ab}{2}\)
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
a)a+b+c=9
=>(a+b+c)2=81
=>a2+b2+c2+2ab+2bc+2ca=81
Từ a2+b2+c2=141=>2ab+2bc+2ca=81-141=-60
=>2(ab+bc+ca)=-60=>ab+bc+ca=-30
b)x+y=1
=>(x+y)3=1
=>x3+3x2y+3xy2+y3=1
=>x3+y3+3xy(x+y)=1
=>x3+y3+3xy=1(Do x+y=1)
c)a3-3ab+2c=(x+y)3-3(x+y)(x2+y2)+2(x3+y3)
=x3+3x2y+3xy2+y3-3x3-3y3-3x2y-3xy2+2x3+2y3=0
d)đang tìm hướng giải
Bài 1: Sửa đề: x^2-9y^2=8xy
=>x^2-8xy-9y^2=0
=>(x-9y)(x+y)=0
=>x=9y hoặc x=-y(loại)
\(A=\dfrac{x+y}{x-y}=\dfrac{9y+y}{9y-y}=\dfrac{10}{8}=\dfrac{5}{4}\)