\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Cả hai đề đều sai ^^ 
Sửa c+1 ở 1.
Câu 2 thử vài số VD: a=-1 ; b=-2 ; c=2 ^^ sai.

ko có sai đề đâu bn câu số 2 3 số bn thử là sai vì nó khi cộng lại ko bằng 0

18 tháng 7 2016

10. a) 

\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)

b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)\(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)

\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)

18 tháng 7 2016

25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)

Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)

\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)

\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)

\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)

\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)

8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)

8 tháng 1 2017

Đặt B là mẫu thức của P thì :

B = ab(x - y)2 + bc(y - z)2 + ca(z - x)2 = abx2 - 2abxy + aby2 + bcy2 - 2bcyz + bcz2 + caz2 - 2cazx + cax2

   = ax2(b + c) + by2(a + c) + cz2(a + b) - 2(bcyz + acxz + abxy) (1)

ax + by + cz = 0 => (ax + by + cz)2 = 0 <=> a2x2 + b2y2 + c2z2 + 2(bcyz + acxz + abxy) = 0 

=> -2(bcyz + acxz + abxy) = a2x2 + b2y2 + c2z2 (2)

Từ (1) và (2),ta có : B = ax2(b + c) + by2(a + c) + cz2(a + b) + a2x2 + b2y2 + c2z2

= ax2(a + b + c) + by2(a + b + c) + cz2(a + b + c) = (a + b + c)(ax2 + by2 + cz2)

\(\Rightarrow P=\frac{1}{a+b+c}=2017\)

8 tháng 1 2017

P=2017

8 tháng 1 2017

Đặt \(ax^4=by^4=cz^4=t\)\(\Rightarrow a=\frac{t}{x^4};b=\frac{t}{y^4};c=\frac{t}{z^4}\)

Ta có: \(VT=\sqrt{ax^2+by^2+cz^2}=\sqrt{\frac{t}{x^2}+\frac{t}{y^2}+\frac{t}{z^2}}\)

\(=\sqrt{t\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\sqrt{t}\left(1\right)\)

\(VP=\sqrt{a}+\sqrt{b}+\sqrt{c}=\sqrt{\frac{t}{x^4}+}\sqrt{\frac{t}{y^4}}+\sqrt{\frac{t}{z^4}}\)

\(=\frac{\sqrt{t}}{x^2}+\frac{\sqrt{t}}{y^2}+\frac{\sqrt{t}}{z^2}=\sqrt{t}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)=\sqrt{t}\left(2\right)\)

Từ (1) và (2) ta có điều phải chứng minh

8 tháng 1 2017

Đúng rồi đấy!

26 tháng 3 2017

Cộng vế với vế ta được:

\(x+y+z=2\left(ax+by+cz\right)\)

Thay thích hợp ta được:

\(x+y+z=2\left(z+cz\right)=2z\left(1+c\right)\Rightarrow1+c=\frac{x+y+z}{2z}\)

Tương tự ta có:

\(1+b=\frac{x+y+z}{2y};1+a=\frac{x+y+z}{2x}\)

Thay vào B ta có:

\(B=\sqrt{\frac{2}{\frac{x+y+z}{2x}}+\frac{2}{\frac{x+y+z}{2y}}+\frac{2}{\frac{x+y+z}{2z}}}\)

\(=\sqrt{\frac{4x}{x+y+z}+\frac{4y}{x+y+z}+\frac{4z}{x+y+z}=\frac{4\left(x+y+z\right)}{x+y+z}}\)

\(=\sqrt{4}=2\)

Đúng thì k, sai thì sửa, mai mình nộp cho cô rồi