Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OA+OC=AC
OB+OD=BD
mà AC=BD và OC=OD
nên OA=OB
Xét ΔOAB vuông tại O có OA=OB
nên ΔOAB vuông cân tại O
=>góc OAB=góc OBA=45 độ
Xét ΔOCD vuông tại O có OC=OD
nên ΔOCD vuông cân tại O
=>góc OCD=góc ODC=45 độ
góc OAB=góc OCD=45 độ
mà hai góc này ở vị trí so le trong
nên AB//CD
Xét tứ giác ABCD có
AB//CD
AC=BD
=>ABCD là hình thang cân
4: Sửa đề: DA=DC
a: BA=BC
DA=DC
=>BD là trung trực của AC
b: góc A+góc C=360-120-80=160 độ
Xét ΔBAD và ΔBCD có
BA=BD
AD=CD
BD chung
=>ΔBAD=ΔBCD
=>góc BAD=góc BCD=160/2=80 độ
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
2) Ta có:
\(C_{ABCD}=AB+BC+CD+AD=54\left(cm\right)\) (1)
\(C_{ABD}=AB+BD+AD=68\)
\(\Rightarrow AB=68-BD-AD\) (2)
\(C_{BCD}=BC+BD+CD=40\)
\(\Rightarrow CD=40-BC-BD\) (3)
Thay (2) và (3) vào (1) ta có:
\(68-BD-AD+BC+AD+40-BC-BD=54\)
\(\Rightarrow108-2BD=54\)
\(\Rightarrow2BD=108-54\)
\(\Rightarrow2BD=54\)
\(\Rightarrow BD=27\left(cm\right)\)
3: Nếu bốn góc trong tứ giác đều là góc nhọn thì chắc chắn tổng 4 góc cộng lại sẽ nhỏ hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Nếu bốn góc trong tứ giác đều là góc tù thì chắc chắn tổng 4 góc cộng lại sẽ lớn hơn 360 độ
=>Trái với định lí tổng 4 góc trong một tứ giác
Do đó: 4 góc trong 1 tứ giác không thể đều là góc nhọn hay đều là góc tù được
a: Xét ΔABI và ΔDCI có
\(\widehat{ABI}=\widehat{DCI}\)
\(\widehat{AIB}=\widehat{DIC}\)
Do đó: ΔABI∼ΔDCI
b: Ta có: ΔABI∼ΔDCI
nên IA/ID=IB/IC
hay \(IA\cdot IC=IB\cdot ID\)
Có : \(AB< OA+OB;BC< OB+OC;CD< OC+OD;DA< OD+OA\)
\(P_{ABCD}=2p=AB+BC+CD+DA< 2\left(OA+OB+OC+OD\right)\)
\(\Leftrightarrow\)\(p< OA+OB+OC+OD\)
Lại có : \(OA< AB-OB;OB< BC-OC;OC< CD-OD;OD< DA-OA\)
Cộng vế theo vế từng bđt trên ta được :
\(OA+OB+OC+OD< AB+BC+CD+DA-\left(OA+OB+OC+OD\right)\)
\(\Leftrightarrow\)\(2\left(OA+OB+OC+OD\right)< AB+BC+CD+DA\) (*)
Có tiếp -,- :
\(OA< AB+OB;OA< DA+OD\)\(\Rightarrow\)\(2OA< AB+DA+OB+OD\)
\(OB< AB+OA;OB< BC+OC\)\(\Rightarrow\)\(2OB< AB+BC+OA+OC\)
\(OC< BC+OB;OC< CD+OD\)\(\Rightarrow\)\(2OC< BC+CD+OB+OD\)
\(OD< CD+OC;OD< DA+OA\)\(\Rightarrow\)\(2OD< CD+DA+OC+OA\)
\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 2\left(AB+BC+CD+DA\right)+2\left(OA+OB+OC+OD\right)\)
\(< 2\left(AB+BC+CD+DA\right)+\left(AB+BC+CD+DA\right)\) ( kết hợp với (*) )
\(\Rightarrow\)\(2\left(OA+OB+OC+OD\right)< 3\left(AB+BC+CD+DA\right)\)
\(\Leftrightarrow\)\(OA+OB+OC+OD< 3.\frac{AB+BC+CD+DA}{2}=3.\frac{2p}{2}=3p\)
Vậy \(p< OA+OB+OC+OD< 3p\)