Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4. \(D=sin^21^o+sin^22^o+sin^23^o+...+sin^287^o+sin^288^o+sin^289^o=\left(sin^21^o+sin^289^o\right)+\left(sin^22^o+sin^288^o\right)+...+\left(sin^244^o+sin^246^o\right)+sin^245^o=1+1+1+...+1+1+0,5=44,5\)
\(5.E=cos^21^o+cos^22^o+cos^23^o+...+cos^287^o+cos^288^o+cos^289^o=\left(cos^21^o+cos^289^o\right)+\left(cos^22^o+cos^288^o\right)+...+\left(cos^244^o+cos^246^o\right)+cos^245^o=1+1+1+...+1+0,5=1.44+0,5=44,5\)
b) \(sin^23^o+sin^215^o+sin^275^o+sin^287^o\)
\(=\left(sin^23^o+cos^23^o\right)+\left(sin^215^o+cos^215^o\right)\)
\(=1+1=2\)
a) \(cos^212^o+cos^278^o+cos^21^o+cos^289^o\)
\(=\left(sin^278^o+cos^278^o\right)+\left(sin^289^o+cos^289^o\right)\)
\(=1+1=2\)
\(A=\left(sin^212^o+sin^278^o\right)+\left(sin^21^o+sin^289^o\right)+\left(sin^273^o+sin^217^o\right)\)
\(A=\left(sin^290^o\right)+\left(sin^290^o\right)+\left(sin^290^o\right)\)
\(A=1+1+1=3\)
Ta có B = sin245o + sin262o + sin227o - (sin247o = sin248o)
sin227o = cos263o
mà cos263o < cos262o
=> sin262o + cos263o < sin262o + cos262o
hay sin262o + sin227o <1 (1)
sin248o = cos242o
mà cos242o > cos247o
=> sin247o + cos242o > sin247o + cos247o
hay sin247o + sin248o > 1
=> - (sin247o + sin248o) <1 (2)
Từ (1) và (2) ta thấy:
sin262o + sin227o - (sin247o = sin248o) < 1
sin245o = 1/2 <1
=> B = sin245o + sin262o + sin227o - (sin247o = sin248o) <1
=> B < A
cái chỗ (sin247o = sin248o) thay thành (sin247o + sin248o) nha ^_^
a) Ta có : sin\(^2\)12o=cos278o=> sin212o+sin278o=1.
tương tự => A=3
b) tương tự câu (a) ta có: cos215o=sin275o ( do 15+75=90 nha bạn ) => cos215o+cos275o=1. Tương tự => B=0
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)
1. M N P K H
Kẻ \(MH\perp NP\) tại H
Ta có: \(S_{MNP}=\dfrac{1}{2}MH.NP\) (1)
\(S_{MNK}=\dfrac{1}{2}MH.KN\) (2)
Ta lại có: KN=MN mà NM<NP
\(\Rightarrow KN< NP\) (3)
Từ (1),(2) và (3) suy ra: \(S_{MNP}>S_{MNK}\)
2.
\(Sin^21^o+Sin^22^o+Sin^23^o+...+Sin^287^o+Sin^288^o+Sin^298^o\)
\(=\left(Sin^21^o+Sin^289^o\right)\left(Sin^22^o+Sin^288^o\right)+...+Sin^245^o\\ =\left(Sin^21^o+Cos^21^o\right)\left(Sin^22^o+Cos^22^o\right)+....+Sin^245^o\\ =44+Sin^245^o\\ =44+\dfrac{1}{2}=44,5\)