Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
c: HB=AB^2/BC=6^2/10=3,6cm
HC=10-3,6=6,4cm
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: ΔABC vuông tại A có AH vuông góc BC
nên AH^2=HB*HC
c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
AH=12*16/20=192/20=9,6cm
a, Xét tam giác HBA và tam giác ABC có
^B _ chung ; ^BHA = ^BAC = 900
Vậy tam giác HBA ~ tam giác ABC (g.g)
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}cm\)
\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)
b, Xét tam giác CHI và tan giác CAH có
^AIH = ^CHA = 900
^C _ chung
Vậy tam giác CHI ~ tam giác CAH (g.g)
\(\dfrac{CH}{AC}=\dfrac{CI}{CH}\Rightarrow CH^2=CI.AC\)
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
2 Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
a: XétΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(\dfrac{S_{ABC}}{S_{HBA}}=\dfrac{25}{9}\)
nên \(S_{HBA}=24:\dfrac{25}{9}=24\cdot\dfrac{9}{25}=8.64\left(cm^2\right)\)
a) Tam giác ABCvà tam giac HBA đồng dạng theo trường hợp g-g-g( \(\widehat{BAC}=\widehat{BHA}=90^0\);\(\widehat{B}:chung\);\(\widehat{C}=\widehat{HAB}\)<cùng phụ góc B>)
b)\(AH^2=HC\cdot HB\Leftarrow\frac{AH}{HC}=\frac{HB}{HA}\Leftarrow\)tam giác HAB và tam giác HAC đồng dạng (g-g-g)
<Bạn tự thử chứng minh xem>
sao tam giác DEF lại vuông tại A nhỉ ???
Xét tam giác ABC và tam giác HBA có :
goác A =góc H =90 độ
góc HAB = góc ACB ( cùng phụ góc ABC )
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
b) xét tam giác AHB và tam giác CHA có :
gócAHB = góc CHA = 90 độ
góc BAH = góc ACH (cùng phụ góc ABC )
Suy ra tam giác AHB đồng dạng tam giác CHA
Suy ra tỉ số : \(\frac{AH}{CH}=\frac{HB}{AH}\)
SUY RA : AH2=HB.CH