Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀI 1:
a)
· Trong ∆ ABC, có: AB2= BC.BH
Hay BC= =
· Xét ∆ ABC vuông tại A, có:
AB2= BH2+AH2
↔AH2= AB2 – BH2
↔AH= =4 (cm)
b)
· Ta có: HC=BC-BH
àHC= 8.3 - 3= 5.3 (cm)
· Trong ∆ AHC, có:
·
Bài 1:
A B C H E
a) Áp dụng hệ thức lượng ta có:
\(AB^2=BH.BC\)
\(\Rightarrow\)\(BC=\frac{AB^2}{BH}\)
\(\Rightarrow\)\(BC=\frac{5^2}{3}=\frac{25}{3}\)
Áp dụng Pytago ta có:
\(AH^2+BH^2=AB^2\)
\(\Rightarrow\)\(AH^2=AB^2-BH^2\)
\(\Rightarrow\)\(AH^2=5^2-3^2=16\)
\(\Rightarrow\)\(AH=4\)
b) \(HC=BC-BH=\frac{25}{3}-3=\frac{16}{3}\)
Áp dụng hệ thức lượng ta có:
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}\)
\(\Leftrightarrow\)\(\frac{1}{HE^2}=\frac{1}{4^2}+\frac{1}{\left(\frac{16}{3}\right)^2}=\frac{25}{256}\)
\(\Rightarrow\)\(\frac{1}{HE}=\frac{5}{16}\)
\(\Rightarrow\)\(HE=\frac{16}{5}\)
Tam giác ABC vuông tại A ﴾gt﴿
=> góc BAD + DAC = 90\(^0\)﴾1﴿
Tam giác HAD vuông tại H có:
góc HDA + HAD = 90\(^0\) ﴾2﴿
Mà góc HAD = góc DAC ﴾ vì AD là p/g của HAC ﴿ ﴾3﴿
Từ ﴾1﴿ ﴾2﴿ và ﴾3﴿ => góc BAD = góc BDA => tam giác ABD cân tại B
=> AB=BD﴾ t/c tam giác cân ﴿
Tam giác ABC có AH là đường cao :
AB 2 = BH * BC ﴾ Hệ thức lượng﴿
<=> AB 2 = ﴾ BD‐6﴿ * BC
<=> AB 2 = ﴾AB‐6﴿ * 25
<=> AB 2 ‐25AB + 150 = 0
<=> ﴾ AB‐10﴿ * ﴾AB‐15﴿=0
<=> AB=10 hoặc AB=15
f(x) = (x2 + x + 1)(x2 + x + 2) – 12
Đặt x2 + x + 1 = y x2 + x + 2 = y + 1
f(x) = y(y + 1) – 12
= y2 + y – 12
= y2 – 3y + 4y – 12
= y(y – 3) + 4(y – 3)
= (y – 3)(y + 4)
Thay y = x2 + x + 1 , ta được:
f(x) = (x2 + x – 2)(x2 + x + 5)
Đến đây ta phân tích tiếp:
x2 + x – 2 = x2 – x + 2x – 2
= x(x – 1) + 2(x – 1)
= (x – 1)(x + 2)
x2 + x + 5 = x2 + x +
Vì nên
Và x2 +x + 5 không thể phân tích được nữa.
Kết quả: f(x) = (x –1)(x + 2)(x2 + x +5).
b: Xét ΔBAC vuông tại B có BH là đường cao
nên \(HA\cdot HC=BH^2\left(1\right)\)
Xét ΔBHC vuông tại H có HE là đường cao
nên \(BE\cdot BC=BH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
bn ơi bấm đúng cho mk nhé
Bài 1:
Xét ΔABC có AD là phân giác
nên AB/AC=BD/CD=3/4
=>AB/3=AC/4
BC=BD+CD=17,5(cm)
Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Theo đề, ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=17.5^2\)
=>k=3,5
=>AB=10,5; AC=14
\(AH=\dfrac{AB\cdot AC}{BC}=8.4\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=\dfrac{10.5^2}{17.5}=6.3\left(cm\right)\)
CH=BC-BH=11,2(cm)