K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
AW
26 tháng 11 2018
1 Xét 2 tam giác MAB và tam giác MDC:
Ta thấy:
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
BM=MC (gt)
MA=MD (gt)
Từ các giả thiết trên, suy ra:
\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)
1) Hình : Tự vẽ
a) Ta có : AM = MD (gt)
HM = MC (gt)
Nên : ACDH là hình bình hành
=> AH = CD (đpcm)
b) Cho HD cắt AB tại E
Do : ACDH là hình bình hành (cmt)
Nên : AC // HD (=) AC // ED
Mà : \(\widehat{EAC}=90^o\)
=> \(\widehat{AED}=180^o-\widehat{EAC}=180^o-90^o=90^o\)
Do đó : DH \(\perp\)AB (đpcm)
c) Ta có : \(\widehat{EHA}=\widehat{CDE}\)(đồng vị)
Xét \(\Delta EAH\)và \(\Delta CHD\), ta có :
\(\widehat{AEH}=\widehat{HCD}=90^o\)
\(\widehat{EHA}=\widehat{CDH}\)(cmt)
Nên : \(\Delta EAH\)đồng dạng với \(\Delta CHD\)(g - g)
=> \(\widehat{BAH}=\widehat{DHC}\)