K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KN
3 tháng 8 2017
3)kẻ BD vuông góc voi71 BC, D thuộc AC
tam giác ABC cân tại A có AH là Đường cao
suy ra AH là trung tuyến
Suy ra BH=HC
(BD vuông góc BC
AH vuông góc BC
suy ra BD song song AH
suy ra BD/AH = BC/CH = 2
suyra 1/BD = 1/2AH suy ra 1BD^2 =1/4AH^2
tam giác BDC vuông tại B có BK là đường cao
suy ra 1/BK^2 =1/BD^2 +1/BC^2
suy ra 1/BK^2 =1/4AH^2 +1/BC^2
BT
7 tháng 11 2017
1) \(1+tan^2\alpha=1+\dfrac{sin^2\alpha}{cos^2\alpha}=\dfrac{cos^2\alpha+sin^2\alpha}{cos^2\alpha}=\dfrac{1}{cos^2\alpha}\) (đpcm).
Bài 1:
Vì \(DH\parallel AC\Rightarrow \frac{BD}{BA}=\frac{BH}{BC}\) (định lý Ta-lét)
Vì \(EH\parallel BA\Rightarrow \frac{EC}{CA}=\frac{CH}{CB}\) (Ta-lét)
\(\Rightarrow \frac{BD}{BA}.\frac{CA}{EC}=\frac{BH}{CH}(1)\)
Theo công thức lượng trong tam giác vuông (sgk) thì :
\(\left\{\begin{matrix} AB^2=BH.BC\\ AC^2=CH.CB\end{matrix}\right.\Rightarrow \frac{BH}{CH}=\frac{AB^2}{AC^2}(2)\)
Từ \((1);(2)\Rightarrow \frac{BD}{BA}.\frac{CA}{EC}=\frac{AB^2}{AC^2}\)
\(\Rightarrow \frac{BD}{EC}=\frac{AB^3}{AC^3}=\left(\frac{AB}{AC}\right)^3\) (đpcm)
b)
Ta có: \(BH+CH=BC=10\)
\(BH.CH=AH^2=25\) (theo hệ thức lượng)
\(\Rightarrow BH=CH=5\) (cm)
Theo hệ thức lượng:
\(\frac{1}{DH^2}=\frac{1}{BH^2}+\frac{1}{AH^2}=\frac{1}{5^2}+\frac{1}{5^2}\Rightarrow DH=\frac{5}{\sqrt{2}}\)
\(\frac{1}{HE^2}=\frac{1}{AH^2}+\frac{1}{HC^2}=\frac{1}{5^2}+\frac{1}{5^2}\Rightarrow HE=\frac{5}{\sqrt{2}}\)
\(S_{ADHE}=DH.HE=\frac{25}{2}\) (cm vuông)
1c)
Theo tính chất đường phân giác:
\(\frac{KI}{BK}=\frac{CI}{CB}\Rightarrow \frac{BI}{BK}=\frac{CI+CB}{CB}\)
\(\frac{KF}{CK}=\frac{BF}{BC}\Rightarrow \frac{CF}{CK}=\frac{BF+BC}{BC}\)
\(\Rightarrow \frac{BI}{BK}.\frac{CF}{CK}=\frac{(CI+CB)(BF+BC)}{BC^2}(1)\)
Cũng theo tính chất tia phân giác:
\(\frac{CI}{AI}=\frac{BC}{AB}\Rightarrow \frac{CI}{AC}=\frac{BC}{BC+AB}(2)\)
\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow \frac{BF}{BA}=\frac{BC}{AC+BC}(3)\)
Từ (1);(2);(3) , thay thế và rút gọn suy ra:
\(\frac{BI}{BK}.\frac{CF}{CK}=\frac{(AB+BC+AC)^2}{(AB+BC)(AC+BC)}\)
\(=\frac{AB^2+AC^2+BC^2+2(AB.AC+AB.BC+AC.BC)}{AB.AC+AB.BC+AC.BC+BC^2}\)
\(=\frac{2BC^2+2(AB.AC+AB.BC+AC.BC)}{AB.AC+AB.BC+AC.BC+BC^2}=2\) (theo định lý Pitago)
Do đó:
\(BI.CF=2BK.CK\) (đpcm)