Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó:ΔBAM=ΔBDM
Suy ra:BA=BD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBAM=ΔBDM
=>BA=BD và MA=MD
b: Xét ΔBDE vuông tại D và ΔBAC vuông tại A có
BD=BA
\(\widehat{DBE}\) chung
Do đó: ΔBDE=ΔBAC
c: Xét ΔMKA vuông tại K và ΔMHD vuông tại H có
MA=MD
\(\widehat{KMA}=\widehat{HMD}\)
Do đó: ΔMKA=ΔMHD
=>MK=MH và AK=HD
Xét ΔNKM vuông tại K và ΔNHM vuông tại H có
NM chung
MK=MH
Do đó: ΔNKM=ΔNHM
=>NK=NH và \(\widehat{KMN}=\widehat{HMN}\)
=>MN là phân giác của góc HMK
d: NK+KA=NA
NH+HD=ND
mà NK=NH và KA=HD
nên NA=ND
=>N nằm trên đường trung trực của AD(1)
MA=MD
=>M nằm trên đường trung trực của AD(2)
BA=BD
=>B nằm trên đường trung trực của AD(3)
Từ (1),(2),(3) suy ra B,M,N thẳng hàng
nếu bạn ko thấy ảnh thì zô thống kê hỏi đáp của mình là thấy bài này nhá . ( cậu tìm câu nào có câu này r ấn zô xem nha )
hoặc link bài của mình nè
https://scontent-hkt1-1.xx.fbcdn.net/v/t1.15752-9/89947717_345887062999332_7304147707155709952_n.jpg?_nc_cat=110&_nc_sid=b96e70&_nc_ohc=Hj57duZ44dcAX91P2ra&_nc_ht=scontent-hkt1-1.xx&oh=7ea184f17776bd230198145c38f92aae&oe=5E95F1D5
a: AC=căn 15^2-9^2=12(cm)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
a: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: AH=AK và MH=MK
Xét ΔABM có \(\widehat{BAM}=\widehat{BMA}\)
nên ΔBAM cân tại B
hay BA=BM
b: Xét ΔMHI vuông tại H và ΔMKC vuông tại K có
MH=MK
\(\widehat{HMI}=\widehat{KMC}\)
Do đó: ΔMHI=ΔMKC
Suy ra: HI=KC
Ta có: AH+HI=AI
AK+KC=AC
mà AH=AK
và HI=KC
nên AI=AC
=>ΔAIC cân tại A
mà AM là đường phân giác
nên AM là đường cao
a, Xét tam giác ABM và tam giác KBM có:
góc ABM = góc MBC ( vì BM là tia phân giác của góc ABC )
BM cạnh chung
góc BAM = góc BKM ( =90°)
=> tam giác ABM = tam giác KBM ( cạnh huyền- góc nhọn )
b, * AM = KM:
Vì tam giác ABM = tam giác KBM ( câu a )
=> AM = KM ( 2 cạnh tương ứng )
* MC > AM:
Vì tia phân giác góc ABC cắt AC ở M => điểm A, điểm M, điểm c cùng nằm trên một đoạn thẳng.
Ta có : AM + MC = AC
=> MC = AC - AM
=> MC > AM
d, tam giác ABC vuông tại A
=> BC bình = AC bình + AC bình
=> 15 bình = 9 bình + AC bình
=> 225 = 81 + AC bình
=> AC bình = 225 - 81
=> AC bình = 144
=> AC = 12 cm.