Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C1 :
Hình : tự vẽ
a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C
mà CI vuông góc vs AB => CI là đường cao của tam giác ABC
=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )
=> IA=IB (đpcm)
C1 :
b) Có IA=IB ( cm phần a )
mà IA+IB = AB
IA + IA = 12 (cm)
=> IA = \(\frac{12}{2}=6\left(cm\right)\)
Xét tam giác vuông CIA có : CI2 + IA2 = CA2 ( Đ/l Py-ta -go )
CI2 + 62 = 102
CI2 = 102 - 62 = 64
=> CI = \(\sqrt{64}=8\left(cm\right)\)
Vậy CI ( hay IC ) = 8cm
a) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=6^2+8^2=36+64=100.\\ \Rightarrow BC=10\left(cm\right).\)
b) Xét \(\Delta ABM\) vuông tại A và \(\Delta KBM\) vuông tại K:
\(BMchung.\)
\(\widehat{ABM}=\widehat{KBM}\) (BM là phân giác góc ABC).
\(\Rightarrow\Delta ABM\) \(=\Delta KBM\left(ch-gn\right).\)
\(\Rightarrow AB=KB.\)
\(\Rightarrow\Delta ABK\) cân tại B.
c) Xét \(\Delta ABK\) cân tại B:
\(\widehat{AKB}=\dfrac{180^o-\widehat{B}}{2}\left(1\right).\)
Xét \(\Delta BDC:\)
DK là đường cao \(\left(DC\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
Mà M là giao điểm của DK và CA.
\(\Rightarrow\) M là trực tâm.
\(\Rightarrow\) BM là đường cao.
Xét \(\Delta DBC:\)
BM là đường cao (cmt).
BM là đường phân giác (gt).
\(\Rightarrow\Delta DBC\) cân tại B.
\(\widehat{DCB}=\dfrac{180^o-\widehat{B}}{2}\left(2\right).\)
Từ (1) (2) \(\Rightarrow\text{}\text{}\widehat{AKB}=\widehat{DCB}.\)
\(\Rightarrow AK//CD.\)
a) Xét ΔABCΔABC vuông tại A:
BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).BC2=AB2+AC2(Pytago).⇒BC2=62+82=36+64=100.⇒BC=10(cm).
b) Xét ΔABMΔABM vuông tại A và ΔKBMΔKBM vuông tại K:
BMchung.BMchung.
ˆABM=ˆKBMABM^=KBM^ (BM là phân giác góc ABC).
⇒ΔABM⇒ΔABM =ΔKBM(ch−gn).=ΔKBM(ch−gn).
⇒AB=KB.⇒AB=KB.
⇒ΔABK⇒ΔABK cân tại B.
c) Xét ΔABKΔABK cân tại B:
ˆAKB=180o−ˆB2(1).AKB^=180o−B^2(1).
Xét ΔBDC:ΔBDC:
DK là đường cao (DC⊥BC).(DC⊥BC).
CA là đường cao (CA⊥AB).(CA⊥AB).
Mà M là giao điểm của DK và CA.
⇒⇒ M là trực tâm.
⇒⇒ BM là đường cao.
Xét ΔDBC:ΔDBC:
BM là đường cao (cmt).
BM là đường phân giác (gt).
⇒ΔDBC⇒ΔDBC cân tại B.
ˆDCB=180o−ˆB2(2).DCB^=180o−B^2(2).
Từ (1) (2) ⇒ˆAKB=ˆDCB.⇒AKB^=DCB^.
⇒AK//CD.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có
BM chung
góc ABM=góc KBM
=>ΔBAM=ΔBKM
c: AM=MK
MK<MC
=>AM<MC
d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có
MA=MK
góc AMD=góc KMC
=>ΔMAD=ΔMKC
=>AD=KC
Xét ΔBDC có BA/AD=BK/KC
nên AK//DC
4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha
*In đậm: quan trọng.
a, Xét tam giác ABM và tam giác KBM có:
góc ABM = góc MBC ( vì BM là tia phân giác của góc ABC )
BM cạnh chung
góc BAM = góc BKM ( =90°)
=> tam giác ABM = tam giác KBM ( cạnh huyền- góc nhọn )
b, * AM = KM:
Vì tam giác ABM = tam giác KBM ( câu a )
=> AM = KM ( 2 cạnh tương ứng )
* MC > AM:
Vì tia phân giác góc ABC cắt AC ở M => điểm A, điểm M, điểm c cùng nằm trên một đoạn thẳng.
Ta có : AM + MC = AC
=> MC = AC - AM
=> MC > AM
d, tam giác ABC vuông tại A
=> BC bình = AC bình + AC bình
=> 15 bình = 9 bình + AC bình
=> 225 = 81 + AC bình
=> AC bình = 225 - 81
=> AC bình = 144
=> AC = 12 cm.