K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 12 2017

Lời giải:

Kéo dài $MG$ cắt $AC$ tại $T$ thì $T$ là trung điểm $AC$

\(\Rightarrow \overrightarrow{TA}+\overrightarrow{TC}=\overrightarrow{0}\)

Theo giả thiết của điểm M suy ra M nằm trên đoạn $AB$ sao cho \(MA=\frac{1}{2}MB\)

Theo tính chất đường trung tuyến suy ra

\(3\overrightarrow{GM}=2\overrightarrow{TM}=(\overrightarrow{TA}+\overrightarrow{AM})+(\overrightarrow{TC}+\overrightarrow{CM})\)

\(=(\overrightarrow{TA}+\overrightarrow{TC})+\overrightarrow{AM}+\overrightarrow{CM}\)

\(=\overrightarrow{AM}+\overrightarrow{CM}=\overrightarrow{AG}+\overrightarrow{GM}+\overrightarrow{CG}+\overrightarrow{GM}\)

\(\Leftrightarrow \overrightarrow{GM}=\overrightarrow{AG}+\overrightarrow{CG}=-(\overrightarrow{GA}+\overrightarrow{GC})\)

\(\Leftrightarrow \overrightarrow{GM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{GB}+\overrightarrow{BM}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}\overrightarrow{BA}+\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \overrightarrow{GB}+\frac{2}{3}(\overrightarrow{BG}+\overrightarrow{GA})+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow \frac{1}{3}\overrightarrow{GB}+\frac{5}{3}\overrightarrow{GA}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow 5\overrightarrow{GA}+\overrightarrow{GB}+3\overrightarrow{GC}=\overrightarrow{0}\)

b)

\(\overrightarrow{IA}=k\overrightarrow{IB}\Leftrightarrow \overrightarrow{IA}-\overrightarrow{IB}=(k-1)\overrightarrow{IB}\)

\(\Leftrightarrow \overrightarrow{BA}=(k-1)\overrightarrow{IB}\)

Do đó : \(\overrightarrow {GI}=\overrightarrow{GB}+\overrightarrow{BI}=\overrightarrow{GB}-\overrightarrow{IB}\) \(=\overrightarrow{GB}-\frac{\overrightarrow{BA}}{k-1}\)

\(=\overrightarrow{GB}-\frac{\overrightarrow{BG}+\overrightarrow{GA}}{k-1}\)

\(=\frac{k}{k-1}\overrightarrow{GB}-\frac{1}{k-1}\overrightarrow{GA}\)

b)

Vì \(\overrightarrow{IA}=k\overrightarrow {IB}\Rightarrow I,A,B\) thẳng hàng

Mà $G$ là trọng tâm $ACM$ nên để $C,G,I$ thẳng hàng thì \(I\) là trung điểm của $AM$

Khi đó: \(\overrightarrow{IA}=\frac{1}{2}\overrightarrow{MA}=\frac{1}{6}\overrightarrow{BA}=\frac{1}{6}(\overrightarrow{BI}+\overrightarrow{IA})\)

\(\Leftrightarrow 5\overrightarrow{IA}=\overrightarrow{BI}\Leftrightarrow \overrightarrow{IA}=-\frac{1}{5}\overrightarrow{IB}\)

Vậy \(k=\frac{-1}{5}\)

22 tháng 12 2023

a: \(\overrightarrow{AE}=\dfrac{2}{3}\overrightarrow{EC}\)

=>E nằm giữa A và C và AE=2/3EC

Ta có: AE+EC=AC(E nằm giữa A và C)

=>\(AC=\dfrac{2}{3}EC+EC=\dfrac{5}{3}EC\)

=>\(\dfrac{AE}{AC}=\dfrac{\dfrac{2}{3}EC}{\dfrac{5}{3}EC}=\dfrac{2}{3}:\dfrac{5}{3}=\dfrac{2}{5}\)

=>\(AE=\dfrac{2}{5}AC\)

=>\(\overrightarrow{AE}=\dfrac{2}{5}\cdot\overrightarrow{AC}\)

\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}\)

\(=-\overrightarrow{AB}+\dfrac{2}{5}\cdot\overrightarrow{AC}\)

b: \(\left|\overrightarrow{IA}+\overrightarrow{IG}\right|=\left|\overrightarrow{IA}-\overrightarrow{IG}\right|\)

=>\(\left[{}\begin{matrix}\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IA}-\overrightarrow{IG}\\\overrightarrow{IA}+\overrightarrow{IG}=\overrightarrow{IG}-\overrightarrow{IA}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2\cdot\overrightarrow{IG}=\overrightarrow{0}\\2\cdot\overrightarrow{IA}=\overrightarrow{0}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}I\equiv G\\I\equiv A\end{matrix}\right.\)

6 tháng 10 2020

mk bận đi ch nên chỉ tạm câu a nha 

vẽ 3 đường trung tuyến AD ; BE ; CF 

VT = 

\(GA+GB+GC\)   ( nhớ thêm dấu vec tơ nha ) 

\(=-\frac{2}{3}AD-\frac{2}{3}BE-\frac{2}{3}CF\)  

\(=-\frac{2}{3}\cdot\frac{1}{2}\left(AB+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(BA+BC\right)-\frac{2}{3}\cdot\frac{1}{2}\left(CA+CB\right)\)     ( quy tắc hình bình hành ) 

\(=-\frac{1}{3}\left(AB+AC\right)-\frac{1}{3}\left(BA+BC\right)-\frac{1}{3}\left(CA+CB\right)\) 

\(=-\frac{1}{3}AB-\frac{1}{3}AC-\frac{1}{3}BA-\frac{1}{3}BC-\frac{1}{3}CA-\frac{1}{3}CB\)    

\(=0=VP\)

6 tháng 10 2020

.... chua hoc

30 tháng 3 2017

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

24 tháng 9 2017

* cái này là công thức rồi bn o cần chứng minh đâu

công thức : cho tam giác ABC ; nếu G là trọng tâm của tam giác ABC thì \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

13 tháng 10 2022

Gọi M trung điểm BC

       G đối xứng D qua M

=> tứ giác BGCD là hình bình hành

=> GD=2.GM (Hình bình hành có 2 đường chéo cắt nhau tại trung điểm của mỗi đường) 

Mà AG = 2.GM ( \(\dfrac{AG}{GM}=\dfrac{2}{1},GA=\dfrac{2}{3}AM\) )

⇒ AG=GD

Mặt khác, G ϵ AD 

\(\overrightarrow{AG}=\overrightarrow{GD}\)

Ta có \(\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{GD}\) (Quy tắc hình bình hành)

Nên \(\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GA}\) = \(\overrightarrow{GD}+\overrightarrow{GA}\)   

Mà \(\overrightarrow{AG}=\overrightarrow{GD}\) (cmt)

\(\overrightarrow{AG}+\overrightarrow{GA}=\overrightarrow{AG}-\overrightarrow{AG}=\overrightarrow{O}\)