K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

21 tháng 10 2018

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

21 tháng 10 2018

A B C H D

ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)

\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)

... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)

\(\Rightarrow AB=9cm\)

b, gọi BD là x .Áp dụng tc đường phân giác ta có:

\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)

\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)

Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)

.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)

\(\Rightarrow BH=5,4cm\)

do AB<AC nên H nằm giữa B và D

\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)

... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)

\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)

Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!

Lần  2 nó lại bảo phải kiểm duyệt trước khi hiển thị! Ức chế hết sức!!! chương trình này có lẽ lỗi nặng?

Mấy cái chỗ .... thì bạn tự điền thêm vào nha!

k cho mk là được rồi! mk ko cần thẻ! cám ơn!

2: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(BH\cdot BC=AB^2\left(1\right)\)

Xét ΔBDC vuông tại B có BA là đường cao ứng với cạnh huyền DC

nên \(AD\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BC=AD\cdot AC\)

5:

1: BE//AC

AC vuông góc BD

=>BE vuông góc BD

=>ΔBED vuông tại B

2: 

DH=căn BD^2-BH^2=9cm

ΔBED vuông tại B có BH là đường cao

nên BD^2=DH*DE

=>DE=15^2/9=25cm

BE=căn 25^2-15^2=20(cm)

8 tháng 8 2023

a) Ta có: \(BC=13cm\Rightarrow BC^2=13^2cm=169cm\)

Xét: \(AB^2+AC^2=5^2+12^2=25+144=169=13^2=BC^2\)

Vậy tam giác ABC vuông tại A có cạnh huyền BC

b) Áp dụng định lý thích hai cạnh góc vuông tà tích giữa cạnh huyền và đường cao ta có:

\(AH\cdot BC=AB\cdot AC\)

\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot5}{13}\approx4,6\left(cm\right)\)

c) Xét ΔAHB vuông tại H có đường cao HE ta có:  

\(\Rightarrow AH^2=AE\cdot AB\) (1)

Xét ΔAHC vuông tại H có đường cao HF ta có:

\(\Rightarrow AH^2=AF\cdot AC\) (2) 

Từ (1) và (2) 

\(\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\) (3) 

Dựa vào (3) 

Ta suy ra: \(\Delta AEF\sim\Delta ABC\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) (đpcm)

a: Xét ΔÂBC có BC^2=AB^2+AC^2

nên ΔABC vuông tại A

b: AH=AB*AC/BC=60/13(cm)

c: ΔAHB vuông tại H có HE là đường cao

nên AE*AB=AH^2

ΔAHC vuông tại H có HF là đường cao

nên AF*AC=AH^2

=>AE*AB=AF*AC

=>AE/AC=AF/AB

=>ΔAEF đồng dạng với ΔACB

=>góc AFE=góc ABC