K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
26 tháng 12 2018

a) . Xét\(\Delta ABE\) và  \(\Delta ADE\) có:

     BA = DA (gt)

     Góc BAE = góc DAE ( gt)

    AE cạnh chung

nên \(\Delta ADE\) =   \(\Delta ABE\)( c-g-c)

b) Ta có :\(\widehat{ABI}+\widehat{AIB}+\widehat{BAI}\)\(^{180^o}\)

    Suy ra : \(\widehat{AIB}\)  = \(180^o\)\(\widehat{ABI}-\widehat{BAI}\)

               \(\widehat{AID}+\widehat{DAI}+\widehat{IDA}\)=\(^{180^o}\)

    Suy ra: \(\widehat{AID}\)\(180^O\) -     \(\widehat{ADI}\)-\(\widehat{IAD}\)

   Mà \(\widehat{BAI}=\widehat{IAD}\left(gt\right)\)

         \(\widehat{ABI}=\widehat{ADI}\)(\(\Delta ABD\)cân tại A)

   \(\Rightarrow\)\(\widehat{AID}=\widehat{AIB}\)

Ta có: \(\widehat{AID}+\widehat{AIB}=180^o\)( 2 GÓC KỀ BÙ )

MÀ  \(\widehat{AID}=\widehat{AIB}\)( CHỨNG MINH TRÊN )

NÊN \(\widehat{AIB}=\widehat{AIB}=\frac{180^O}{2}=90^O\)

HAY   \(AE\perp BD\)

1Đặt:\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)Chứng minh rằng \(\frac{A}{B}\) là số nguyên.2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=03Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)5CHo tam giác ABC với \(\widehat{B}\)<900...
Đọc tiếp

1Đặt:

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2005.2006}\)

\(B=\frac{1}{1004.2006}+\frac{1}{1005.2005}+...+\frac{1}{2006.1004}\)

Chứng minh rằng \(\frac{A}{B}\) là số nguyên.

2Tìm nghiệm nguyên dương của phương trình:xy-2x-3y+1=0

3Cho f(x)=\(ãx^2+bx+c\)thỏa mãn:f(-3)<-10;f(-1)>0;f(1)<-1.Hãy xác định dấu của hệ số a

4Cho x2+y2=1.Tìm giá trị lớn nhất của biểu thức:S=(2-x)(2-y)

5CHo tam giác ABC với \(\widehat{B}\)<900 và \(\widehat{B}=2\widehat{C}\).Kẻ AH vuông góc với BC(H\(\in\)BC).Trên tia đối của tia BA LẤY ĐIỂM e SAO CHO BE=BH.Đường thẳng HE cắt AC tại D.

a)Chứng minh:\(\widehat{E}=\frac{1}{2}\widehat{ABC}\)

b)Chứng minh DA=DH=DC

c)Lấy điểm B*sao cho H là trung điểm của BB*.Chứng minh rằng:tam giác AB*C cân.

d)Chứng minh:AE=HC.

6Cho tam giác ABC(AB=AC) với góc ACB=80 độ.Trong tam giác ABC có điểm M sao cho góc MAB =10 độ và góc MBA=30 độ.Tính góc BMC

 

2
23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

23 tháng 1 2020

                                                         Bài giải

\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2005\cdot2006}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(A=\frac{1}{2}-\frac{1}{2006}\)

\(A=\frac{501}{1003}\)

3 tháng 12 2018

A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :

AB=AD

AC=AE

=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )