Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng tính chất đường phân giác của tam giác ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{12}{18}=\frac{2}{3}\)
\(\Rightarrow\frac{BD}{2}=\frac{DC}{3}=\frac{BD+DC}{2+3}=\frac{BC}{5}\Rightarrow\frac{BD}{BC}=\frac{2}{5}\)
Kẻ \(DK//BE\left(K\in AC\right)\text{ ta có:}\)
\(\frac{AE}{EK}=\frac{AI}{ID}=2;\frac{EK}{EC}=\frac{BD}{BC}=\frac{2}{5}\)
Do đó:\(\frac{AE}{EK}\cdot\frac{EK}{EC}=\frac{AE}{EC}=\frac{2}{5}.2=\frac{4}{5}\)
b)\(\text{Ta có:}\)
\(\frac{AE}{EC}=\frac{4}{5}\Rightarrow\frac{AE}{4}=\frac{EC}{5}=\frac{AE+EC}{4+5}=\frac{AC}{9}=\frac{18}{9}=2\)
\(\Rightarrow AE=8cm,EC=10cm\)
bn ơi bài 1 ý a) chỉ có thể tính tỉ lệ thôi ko tính đc ra số hẳn đâu
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên BDDC=ABACBDDC=ABAC(Tính chất đường phân giác của tam giác)
⇔BDDC=23⇔BDDC=23
⇔BD2=CD3⇔BD2=CD3
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
BD2=CD3=BD+CD2+3=BC5BD2=CD3=BD+CD2+3=BC5
⇔BDBC=25⇔BDBC=25
Kẻ DK//BE(K∈EC)
Xét ΔADK có
I∈AD(gt)
E∈AK(gt)
IE//DK(gt)
Do đó: AEEK=AIIDAEEK=AIID(Định lí Ta lét)
hay AEEK=2AEEK=2
Xét ΔBEC có
D∈BC(gt)
K∈EC(gt)
DK//BE(gt)
Do đó: EKEC=BDBCEKEC=BDBC(Hệ quả của Định lí Ta lét)
hay EKEC=25EKEC=25
Ta có: AEEK⋅EKEC=AEECAEEK⋅EKEC=AEEC
⇔AEEC=2⋅25=45⇔AEEC=2⋅25=45
b) Ta có: AEEC=45AEEC=45(cmt)
nên AE4=EC5AE4=EC5
mà AE+EC=AC(E nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
AE4=EC5=AE+EC4+5=189=2AE4=EC5=AE+EC4+5=189=2
Do đó:
⎧⎪ ⎪⎨⎪ ⎪⎩AE4=2EC5=2⇔{AE=2⋅4=8(cm)EC=2⋅5=10(cm){AE4=2EC5=2⇔{AE=2⋅4=8(cm)EC=2⋅5=10(cm)
Vậy: AE=8cm; EC=10cm
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=5^2+12^2=169\)
=>\(BC=\sqrt{169}=13\left(cm\right)\)
Xét ΔBAC có BE là phân giác
nên \(\dfrac{AE}{AB}=\dfrac{CE}{CB}\)
=>\(\dfrac{AE}{5}=\dfrac{CE}{13}\)
mà AE+CE=AC=12
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{5}=\dfrac{CE}{13}=\dfrac{AE+CE}{5+13}=\dfrac{12}{18}=\dfrac{2}{3}\)
=>\(AE=5\cdot\dfrac{2}{3}=\dfrac{10}{3}\left(cm\right);CE=13\cdot\dfrac{2}{3}=\dfrac{26}{3}\left(cm\right)\)
b: Kẻ IH\(\perp\)AC
=>IH là khoảng cách từ I xuống AC
IH\(\perp\)AC
AB\(\perp\)AC
Do đó: IH//AB
Xét ΔAEB có AI là phân giác
nên \(\dfrac{EI}{IB}=\dfrac{AE}{AB}=\dfrac{10}{3}:5=\dfrac{2}{3}\)
=>\(\dfrac{EI}{EB}=\dfrac{2}{5}\)
Xét ΔEAB có HI//AB
nên \(\dfrac{HI}{AB}=\dfrac{EI}{EB}\)
=>\(\dfrac{HI}{5}=\dfrac{2}{5}\)
=>HI=2(cm)
c: Xét ΔABC có AD là phân giác
nên \(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45\)
=>\(AD=\dfrac{2\cdot5\cdot12}{5+12}\cdot\dfrac{\sqrt{2}}{2}\simeq4,99\left(cm\right)\)
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
-Qua D kẻ đường thẳng song song BI cắt AC tại F.
-Xét △ABC: AD là tia p/g của \(\widehat{BAC}\) (gt)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{AB}{AC}\) (định lí đường phân giác trong tam giác)
\(\Rightarrow\dfrac{BD}{CD}=\dfrac{10}{35}=\dfrac{2}{7}\)
-Có: \(AE=\dfrac{3}{4}AD\) (gt) ; \(AE+ED=AD\)
\(\Rightarrow\dfrac{3}{4}AD+ED=AD\)
\(\Rightarrow ED=\dfrac{1}{4}AD\)
\(\Rightarrow\dfrac{AE}{ED}=\dfrac{\dfrac{3}{4}AD}{\dfrac{1}{4}AD}=3\)
-Xét △AIF: EI//DF.
\(\Rightarrow\dfrac{AI}{IF}=\dfrac{AE}{ED}=3\) (định lí Ta-let) (1) \(\Rightarrow IF=\dfrac{1}{3}AI\)
-Xét △IBC: DF//BI.
\(\Rightarrow\dfrac{IF}{CF}=\dfrac{BD}{CD}=\dfrac{2}{7}\) (định lí Ta-let) (2)
-Từ (1), (2) suy ra:
\(\dfrac{AI}{IF}.\dfrac{IF}{CF}=3.\dfrac{2}{7}=\dfrac{6}{7}\)
\(\Rightarrow\dfrac{AI}{CF}=\dfrac{6}{7}\)
\(\Rightarrow CF=\dfrac{7}{6}AI\)
*\(AI+IF+CF=AC\)
\(\Rightarrow AI+\dfrac{7}{6}AI+\dfrac{1}{3}AI=35\)
\(\Rightarrow\dfrac{5}{2}AI=35\)
\(\Rightarrow AI=14\left(cm\right)\)
a) Xét ΔABC có
AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{DC}=\dfrac{AB}{AC}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{BD}{DC}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{BD}{2}=\dfrac{CD}{3}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{2}=\dfrac{CD}{3}=\dfrac{BD+CD}{2+3}=\dfrac{BC}{5}\)
\(\Leftrightarrow\dfrac{BD}{BC}=\dfrac{2}{5}\)
Kẻ DK//BE(K∈EC)
Xét ΔADK có
I∈AD(gt)
E∈AK(gt)
IE//DK(gt)
Do đó: \(\dfrac{AE}{EK}=\dfrac{AI}{ID}\)(Định lí Ta lét)
hay \(\dfrac{AE}{EK}=2\)
Xét ΔBEC có
D∈BC(gt)
K∈EC(gt)
DK//BE(gt)
Do đó: \(\dfrac{EK}{EC}=\dfrac{BD}{BC}\)(Hệ quả của Định lí Ta lét)
hay \(\dfrac{EK}{EC}=\dfrac{2}{5}\)
Ta có: \(\dfrac{AE}{EK}\cdot\dfrac{EK}{EC}=\dfrac{AE}{EC}\)
\(\Leftrightarrow\dfrac{AE}{EC}=2\cdot\dfrac{2}{5}=\dfrac{4}{5}\)
b) Ta có: \(\dfrac{AE}{EC}=\dfrac{4}{5}\)(cmt)
nên \(\dfrac{AE}{4}=\dfrac{EC}{5}\)
mà AE+EC=AC(E nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AE}{4}=\dfrac{EC}{5}=\dfrac{AE+EC}{4+5}=\dfrac{18}{9}=2\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AE}{4}=2\\\dfrac{EC}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AE=2\cdot4=8\left(cm\right)\\EC=2\cdot5=10\left(cm\right)\end{matrix}\right.\)
Vậy: AE=8cm; EC=10cm