K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔADM có

AB=AD

góc BAM=góc DAM

AM chung

Do đó: ΔABM=ΔADM

SUy ra: MB=MD

b: Xét ΔDAK và ΔBAC có

góc ADK=góc ABC

AD=AB

góc DAK chung

Do đó: ΔDAK=ΔBAC

c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A

d: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

2 tháng 7 2018

A B C M N H

a)MH là đường trung trực đoạn AC cũng là đường trung trực tam giác MAC hạ từ đỉnh M
Suy ra tam giác MAC cân tại M 
Suy ra góc MAC = 1800 - 2* góc ACB = góc BAC (đpcm)

b)Tam giác MAC cân tại M  suy ra góc MAC = góc MCA= góc ABC
lại có góc MAC + góc CAN= góc ABC+ góc ABM (cùng bằng 1800)
suy ra góc ABM= góc CAN

Xét tam giác AMB và tam giác CNA có 
AC=AB (tam giác ABC cân tại A)
MB=AN (gt)
góc ABM= góc CAN(cmt)
Suy ra \(\Delta AMB~\Delta CNA\)(c.g.c)
suy ra góc CMA= góc CNA
suy ra tam giác MCN cân tại C
suy ra MC=CN (đpcm)
c) Có \(CM\perp CN\) và tam giác MCN cân tại C
Suy ra tam giác MCN vuông cân tại C
suy ra góc CNM= góc CMN = 450
mà góc NMA= góc CAB (cmt)
suy ra góc BAC = 450
Vậy để \(CM\perp CN\)    thì tam giác ABC cân có góc A = 450

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^ (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^ (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^ (2 góc t/ứng)

=> AD là tia p/giác của ���^

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900 (gt)

  BM = CN (gt)

    �^=�^ (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2 (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2 (2)

Từ (1) và (2) => ���^=�^

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^ (2 góc t/ứng)

=> AH là tia p/giác của �^

Mà AD cũng là tia p/giác của �^

=> AH  AD 

=> A, D, H thẳng hàng

a: Xét ΔABM và ΔADM có

AB=AD

góc BAM=góc DAM

AM chung

Do đó: ΔABM=ΔADM

SUy ra: MB=MD

b: Xét ΔDAK và ΔBAC có

góc ADK=góc ABC

AD=AB

góc DAK chung

Do đó: ΔDAK=ΔBAC

c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A

mà MK=MC

nên AM là đường trung trực của KC

d: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

a: Xét ΔABM và ΔADM có

AB=AD

góc BAM=góc DAM

AM chung

Do đó: ΔABM=ΔADM

SUy ra: MB=MD

b: Xét ΔDAK và ΔBAC có

góc ADK=góc ABC

AD=AB

góc DAK chung

Do đó: ΔDAK=ΔBAC

c: Xét ΔAKC có AK=AC
nên ΔAKC cân tại A

d: Xét ΔABC có AM là phân giác

nên BM/AB=CM/AC

mà AB<AC

nên BM<CM

DD
23 tháng 5 2021

a) Xét \(\Delta BAM\)và \(\Delta DAM\)

\(DA=BA\)

\(\widehat{BAM}=\widehat{DAM}\)

\(AM\)chung

\(\Rightarrow\Delta BAM=\Delta DAM\left(c.g.c\right)\)

\(\Rightarrow BM=DM\)(hai cạnh tương ứng) 

b) \(\Delta BAM=\Delta DAM\Rightarrow\widehat{ABM}=\widehat{ADM}\)(hai góc tương ứng) 

Xét \(\Delta BAC\)và \(\Delta DAK\):

\(BA=DA\)

\(\widehat{A}\)chung

\(\widehat{ABM}=\widehat{ADM}\)

 \(\Rightarrow\Delta BAC=\Delta DAK\left(g.c.g\right)\)

c) \(\Delta BAC=\Delta DAK\Rightarrow AC=AK\)(hai cạnh tương ứng) 

\(\Rightarrow\Delta AKC\)cân tại \(A\).

d) \(\Delta ABC\)có phân giác \(AM\)nên \(\frac{BM}{AB}=\frac{CM}{AC}\)mà \(AB< AC\Rightarrow BM< CM\)

23 tháng 5 2021

bạn ơi hình nữa  giúp mình