Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mấy bài kia mình giải cho bạn rùi bây giờ mk giải bài 4 nhá
Gọi số nguyên cần tìm là \(a\) theo đề bài ta có :
\(\frac{151-a}{161-a}=\frac{21}{26}\)
\(\Rightarrow\)\(21\left(161-a\right)=26\left(151-a\right)\)
\(\Rightarrow\)\(3381-21a=3926-26a\)
\(\Rightarrow\)\(-21a+26a=3926-3381\)
\(\Rightarrow\)\(5a=545\)
\(\Rightarrow\)\(a=\frac{545}{5}\)
\(\Rightarrow\)\(a=109\)
Vậy số nguyên cần tìm là \(109\)
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
Chị sử dụng cách làm lớp 7 ở câu 3 nha em
em cũng tự quy đồng và suy ra cách làm của cô giáo dạy em nha
chữ cj xấu thì mong em thông cảm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\dfrac{1}{6};\dfrac{1}{3};\dfrac{1}{2};...\)
\(\Rightarrow\dfrac{1}{6};\dfrac{2}{6};\dfrac{3}{6};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{4}{6}\)
b) \(\dfrac{1}{8};\dfrac{5}{24};\dfrac{7}{24};...\)
\(\Rightarrow\dfrac{3}{24};\dfrac{5}{24};\dfrac{7}{24};...\)
Dãy có quy luật tăng dần lên 2 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{9}{24}\)
c) \(\dfrac{1}{5};\dfrac{1}{4};\dfrac{1}{3};...\)
\(\dfrac{4}{20};\dfrac{5}{20};\dfrac{6}{20};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{7}{20}\)
d) \(\dfrac{4}{15};\dfrac{3}{10};\dfrac{1}{3};...\)
\(\Rightarrow\dfrac{8}{30};\dfrac{9}{30};\dfrac{11}{30};...\)
Dãy có quy luật tăng dần lên 1 đơn vị ở tử số
\(\Rightarrow\) Số tiếp theo của dãy là: \(\dfrac{12}{30}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(A=\dfrac{2005^{2005}+1}{2005^{2006}+1}< 1\)
\(A< \dfrac{2005^{2005}+1+2004}{2005^{2006}+1+2004}\Rightarrow A< \dfrac{2005^{2005}+2005}{2005^{2006}+2005}\Rightarrow A< \dfrac{2005\left(2005^{2004}+1\right)}{2005\left(2005^{2005}+1\right)}\Rightarrow A< \dfrac{2005^{2004}+1}{2005^{2005}+1}=B\)
\(A< B\)
Ta có : A = \(\dfrac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005\)A = \(\dfrac{\left(2005^{2005}+1\right).2005}{2005^{2006}+1}\)
\(2005\)\(A\)= \(\dfrac{2005^{2006}+2005}{2005^{2006}+1}\)
\(2005\)\(A\)= \(\dfrac{2005^{2006}+1+2004}{2005^{2006}+1}\)
\(2005A=\dfrac{2005^{2006}+1}{2005^{2006}+1}+\dfrac{2004}{2005^{2006}+1}\)
\(2005A=1+\dfrac{2004}{2005^{2006}+1}\)
Tương tự như vậy với \(B\) ta đc
\(2005B=1+\dfrac{2004}{2005^{2005}+1}\)
Vì \(2005^{2006}+1>2005^{2005}+1\)
\(=>\) \(1+\dfrac{2004}{2005^{2006}+1}\)\(< \)\(1+\dfrac{2004}{2005^{2005}+1}\)
\(=>\)\(2005A< 2005B\)
\(=>\)\(A< B\)
Vậy \(A< B\)
![](https://rs.olm.vn/images/avt/0.png?1311)
tính chất trên gọi là tính chất bắc cầu, ta so sánh hai phân số với một số (phân số) thứ 3.
Câu 3:
Gọi phân số cần tìm có dạng là a/b
Vì a/b=3/4 nên a/3=b/4
Đặt a/3=b/4=k
=>a=3k; b=4k
Theo đề, ta có: \(\dfrac{a+60}{b}=\dfrac{9}{10}\)
=>10a+600=9b
=>10a-9b=600
=>30k-36k=600
=>k=-10
=>a/b=-30/-40
Câu 4:
Gọi số cần tìm là x
Theo đề, ta có: \(\dfrac{151-x}{161-x}=\dfrac{21}{26}\)
=>3926-26x=3381-21x
=>-5x=-545
hay x=109