Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a) \(-\dfrac{2}{3}\left(x-\dfrac{1}{4}\right)=\dfrac{1}{3}\left(2x-1\right)\)
\(\Rightarrow-\dfrac{2}{3x}+\dfrac{1}{6}=\dfrac{2}{3}x-\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}x+\dfrac{2}{3}x=\dfrac{1}{6}+\dfrac{1}{3}\)
\(\Rightarrow x.\left(\dfrac{2}{3}+\dfrac{2}{3}\right)=\dfrac{1}{2}\)
\(\Rightarrow x.\dfrac{4}{3}=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}:\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{3}{8}\)
a) Ta có: \(\frac{2}{3}x-\frac{1}{2}=\frac{1}{10}\)
\(\Leftrightarrow x\cdot\frac{2}{3}=\frac{1}{10}+\frac{1}{2}=\frac{6}{10}\)
hay \(x=\frac{6}{10}:\frac{2}{3}=\frac{6}{10}\cdot\frac{3}{2}=\frac{18}{20}=\frac{9}{10}\)
Vậy: \(x=\frac{9}{10}\)
b) Ta có: \(5\frac{4}{7}:x=13\)
\(\Leftrightarrow\frac{39}{7}:x=13\)
\(\Leftrightarrow x=\frac{39}{7}:13=\frac{39}{7}\cdot\frac{1}{13}=\frac{3}{7}\)
Vậy: \(x=\frac{3}{7}\)
c) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow\frac{14}{5}x-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=84\)
\(\Leftrightarrow x=84:\frac{14}{5}=84\cdot\frac{5}{14}=\frac{420}{14}=30\)
Vậy: x=30
d) Ta có: \(\frac{2}{3}+\frac{1}{3}:x=\frac{3}{5}\)
\(\Leftrightarrow\frac{1}{3}:x=\frac{3}{5}-\frac{2}{3}=\frac{-1}{15}\)
hay \(x=\frac{1}{3}:\frac{-1}{15}=\frac{1}{3}\cdot\left(-15\right)=\frac{-15}{3}=-5\)
Vậy: x=-5
e) Ta có: \(8\frac{2}{3}:x-10=-8\)
\(\Leftrightarrow\frac{26}{3}:x=2\)
hay \(x=\frac{26}{3}:2=\frac{26}{3}\cdot\frac{1}{2}=\frac{26}{6}=\frac{13}{3}\)
Vậy: \(x=\frac{13}{3}\)
g) Ta có: \(x+30\%=-1.3\)
\(\Leftrightarrow x+\frac{3}{10}=\frac{-13}{10}\)
hay \(x=\frac{-13}{10}-\frac{3}{10}=\frac{-16}{10}=\frac{-8}{5}\)
Vậy: \(x=\frac{-8}{5}\)
i) Ta có: \(3\frac{1}{3}x+16\frac{3}{4}=-13.25\)
\(\Leftrightarrow x\cdot\frac{10}{3}+\frac{67}{4}=-\frac{53}{4}\)
\(\Leftrightarrow x\cdot\frac{10}{3}=\frac{-53}{4}-\frac{67}{4}=-30\)
\(\Leftrightarrow x=-30:\frac{10}{3}=-30\cdot\frac{3}{10}=\frac{-90}{10}=-9\)
Vậy: x=-9
k) Ta có: \(\left(2\frac{4}{5}x-50\right):\frac{2}{3}=51\)
\(\Leftrightarrow x\cdot\frac{14}{5}-50=51\cdot\frac{2}{3}=34\)
\(\Leftrightarrow x\cdot\frac{14}{5}=34+50=84\)
hay \(x=84:\frac{14}{5}=84\cdot\frac{5}{14}=30\)
Vậy: x=30
m) Ta có: \(\left|2x-1\right|=\left(-4\right)^2\)
\(\Leftrightarrow\left|2x-1\right|=16\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=16\\2x-1=-16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=17\\2x=-15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{17}{2}\\x=\frac{-15}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{17}{2};\frac{-15}{2}\right\}\)
A=4+(22+23+24+...+220)
A-4=22+23+24+...+220
2(A-4)=23+24+25+...+221
A-4=2(A-4)-(A-4)=(23+24+25+...+221)-(22+23+24+...+220)
A-4=(23-23)+(24-24)+(25-25)+...+(220-220)+(221-22)
A-4=221-4
A =221-4+4
A =221
Bạn làm tiếp nha .
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2
\(10^n\)có 1 chữ số 1 và n chữ số 0 nên tổng các chữ số của \(10^n+8\)bằng 9, do vậy nó chia hết cho 9
\(M=2+2^3+2^5+2^7+....+2^{51}\)
\(=\left(2+2^3\right)+\left(2^5+2^7\right)+....+\left(2^{49}+2^{51}\right)\)
\(=10+2^4\left(2+2^3\right)+....+2^{48}\left(2+2^3\right)\)
\(=10+2^4.10+...+2^{48}.10\)
\(=10\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮10\)
\(=2.5.\left(1+2^4+...+2^{48}\right)\Rightarrow M⋮5\)
\(M=2+2^3+2^5+2^7+....+2^{51}.\)
\(M+2^{ }=2+2+2^3+2^5+2^7+.....+2^{51}\)
\(=\left(2+2+2^3\right)+\left(2^5+2^7+2^9\right)+....+\left(2^{47}+2^{49}+2^{51}\right)\)
\(=12+2^4\left(2+2^3+2^5\right)+......+2^{46}\left(2+2^3+2^5\right)\)
\(=12+2^4.42+....+2^{46}.42\)
\(=12+7.3.2\left(2^4+...+2^{46}\right)\)
\(\Rightarrow M=\left[12+7.3.2\left(2^4+.....+2^{46}\right)\right]-2\)
\(=10+7.3.2\left(2^4+....+2^{46}\right)\)
Ta có: \(7.3.2\left(2^4+...+2^{46}\right)⋮7\)mà 10 không chia hết cho 7
Suy M không chia hết cho 7