\(\left\{{}\begin{matrix}x+y=3\\2x-my=1\end{matrix}\right.\)

a)giải khi...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2018

ka) khi m = -7. ta có :

\(\left\{{}\begin{matrix}x+y=3\\2x+7y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}2x+2y=6\\2x+7y=1\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}-5y=5\\x=3-y\end{matrix}\right.< =>\left\{{}\begin{matrix}y=-1\\x=3+1=4\end{matrix}\right.\)

b) vì hpt có nghiệm bằng ( -1;4) => 2.(-1) - m.4 = 1

=> -2 - 4m = 1

=> 4m = -3

=> m = -3/4

16 tháng 4 2018

Câu ab mk bt lm r nhưng câu c ,d chưa bt

27 tháng 1 2019

ĐK: \(m\ne0\)

a, Thay m = 2 (TM) vào hệ PT ta có:

\(\left\{{}\begin{matrix}x+2y=1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2\\2x+y=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}3y=1\\2x+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy hệ PT có nghiệm (x ; y) là \(\left(\dfrac{1}{3};\dfrac{1}{3}\right)\)

b, \(\left\{{}\begin{matrix}x+my=1\\mx+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\left(1\right)\\mx+y=1\left(2\right)\end{matrix}\right.\)

Thay (1) vào (2) ta có: \(m\left(1-my\right)+y=1\)\(\Leftrightarrow m-m^2y+y=1\Leftrightarrow y\left(1-m^2\right)=1-m\left(3\right)\)

Để hệ PT có nghiệm duy nhất \(\Leftrightarrow\)PT (3) có nghiệm \(\Leftrightarrow1-m^2\ne0\Leftrightarrow m^2\ne1\Leftrightarrow m\ne\pm1\)

Với \(m\ne\pm1\) thì hệ PT có nghiệm duy nhất

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1-m}{1-m^2}=\dfrac{1-m}{\left(1-m\right)\left(1+m\right)}=\dfrac{1}{1+m}\\x=\dfrac{1}{1+m}\end{matrix}\right.\)

Để x, y > 0 \(\Leftrightarrow\dfrac{1}{1+m}>0\)mà 1 > 0 nên \(1+m>0\Leftrightarrow m>-1\)kết hợp với điều kiện ta có: \(m>-1,m\ne1\)

27 tháng 1 2019

Mình làm câu b thôi nhé

b) Ta có: x + my = 1

=> x = 1 - my

Lại có: mx + y = 1

=> y = 1 - mx = 1 - m(1 - my) = 1 - m + m2y

=> y - m2y = 1 - m

=> y(1 - m2) = 1 - m

=> y = \(\dfrac{1-m}{1-m^2}=\dfrac{1}{1+m}\)

=> x = 1 - \(\dfrac{m}{1+m}\) = \(\dfrac{1}{1+m}\)

=> Để x, y > 0 thì m + 1 > 0

=> m > -1

2 tháng 6 2019

#)Bạn ơi ! Hệ phương trình k có hiện @@ sao mak giải :v

hệ phương trình đâu???

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Lời giải:

Khi \(m=-\sqrt{2}\). HPT tương đương:

\(\left\{\begin{matrix} (-\sqrt{2}+1)x-y=3\\ -\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\)

Cộng theo vế: \(\Rightarrow (1-2\sqrt{2})x=3-\sqrt{2}\Rightarrow x=\frac{3-\sqrt{2}}{1-2\sqrt{2}}=\frac{1-5\sqrt{2}}{7}\)

\(\Rightarrow y=(m+1)x-3=\frac{(-\sqrt{2}+1)(1-5\sqrt{2})}{7}-3=-\frac{10+6\sqrt{2}}{7}\)

b)

\(\left\{\begin{matrix} (m+1)x-y=3\\ mx+y=m\end{matrix}\right.\Rightarrow \left\{\begin{matrix} y=(m+1)x-3\\ mx+y=3\end{matrix}\right.\)

\(\Rightarrow mx+[(m+1)x-3]=m\)

\(\Leftrightarrow x(2m+1)=m+3\)

Để hệ có bộ nghiệm duy nhất thì $x$ là duy nhất.

Với \(m=-\frac{1}{2}\Rightarrow x.0=\frac{5}{2}\) (vô lý, pt vô nghiệm)

Với \(m\neq -\frac{1}{2}\), pt có nghiệm duy nhất \(x=\frac{m+3}{2m+1}\)

\(\Rightarrow y=(m+1)x-3=\frac{m^2-2m}{2m+1}\)

Do đó: \(x+y=\frac{m^2-m+3}{2m+1}\)

Để \(x+y>0\Leftrightarrow \frac{m^2-m+3}{2m+1}>0\Leftrightarrow \frac{(m-\frac{1}{2})^2+\frac{11}{4}}{2m+1}>0\)

\(\Leftrightarrow 2m+1>0\Leftrightarrow m> \frac{-1}{2}\)

Vậy đk là \(m> \frac{-1}{2}\)

a) \(m=-3\) ta có hệ phương trình:

\(\left\{{}\begin{matrix}x+2y=-8\\x+y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=-2\end{matrix}\right.\)

Vậy khi \(m=-3\) thì hệ có nghiệm \(\left(x;y\right)=\left(-2;-3\right)\)

b)

\(\left\{{}\begin{matrix}x+2y=3m+1\\x+y=2m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=m\\x=m+1\end{matrix}\right.\)

Ta có: \(x^2+y^2< m^2+6m+6\)

\(\Rightarrow m^2+2m+1+m^2< m^2+6m+6\)

\(\Leftrightarrow m^2-4m-5< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-5\right)< 0\)

\(\Leftrightarrow-1< m< 5\)

Vậy \(-1< m< 5\)

NV
15 tháng 7 2020

a/ Bạn tự giải

b/ Trừ vế cho vế \(\Leftrightarrow\left\{{}\begin{matrix}y=m\\x+y=2m+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=m\\x=m+1\end{matrix}\right.\)

\(x^2+y^2< m^2+6m+6\)

\(\Leftrightarrow m^2+\left(m+1\right)^2< m^2+6m+6\)

\(\Leftrightarrow m^2-4m-5< 0\)

\(\Leftrightarrow\left(m+1\right)\left(m-5\right)< 0\Rightarrow-1< m< 5\)

b:

Sửa đê; x^2+y^2=1

=>3x=m-my và x(m-1)+2y=m-1

=>x=-1/3my+1/3m và (m-1)(-1/3my+1/3m)+2y=m-1

=>x=-1/3my+1/3m và \(y\cdot\dfrac{-1}{3}m^2+\dfrac{1}{3}m^2+\dfrac{1}{3}my-\dfrac{1}{3}m+2y=m-1\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}my+\dfrac{1}{3}m\\y\left(-\dfrac{1}{3}m^2+\dfrac{1}{3}m+2\right)=m-1-\dfrac{1}{3}m^2+\dfrac{1}{3}m=-\dfrac{1}{3}m^2+\dfrac{4}{3}m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\left(-m^2+m+6\right)=-m^2+4m-3\\x=-\dfrac{1}{3}my+\dfrac{1}{3}m\end{matrix}\right.\)

=>y*(m-3)(m-2)=(m-3)(m-1) và x=-1/3my+1/3m

Nếu m=3 thì hệ có vô số nghiệm

nếu m=2 thì hệ vô nghiệm

Nếu m<>3; m<>2 thì hệ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m-2}\\x=-\dfrac{1}{3}\cdot\dfrac{m^2-m}{m-2}+\dfrac{m}{3}=\dfrac{-m^2+m}{3m-6}+\dfrac{m}{3}=\dfrac{-m^2+m+m^2-2m}{3\left(m-2\right)}=\dfrac{-m}{3\left(m-2\right)}\end{matrix}\right.\)

x^2+y^2=1

=>(m-1/m-2)^2++(-m/3m-6)^2=1

=>\(\dfrac{\left(m-1\right)^2}{\left(m-2\right)^2}+\dfrac{m^2}{9\left(m-2\right)^2}=1\)

=>9(m-1)^2+m^2=9(m-2)^2

=>9m^2-18m+9+m^2=9m^2-36m+36

=>m^2-18m+9=-36m+36

=>m^2+18m-27=0

=>\(m=-9\pm6\sqrt{3}\)