Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn coi lại dữ liệu bài toán, vừa thừa vừa thiếu
SA=SC=AC nên tam giác SAC đều thì hiển nhiên \(\widehat{CSA}=60^0\) ko cần đề bài phải cho nữa
\(\widehat{ASB}=90^0\) và SA=SB thì tam giác SAB vuông cân tại S nên ta có \(AB=\sqrt{SA^2+SB^2}=a\sqrt{2}\) cũng không cần đề phải cho
Nhưng hoàn toàn ko có dữ liệu BC hoặc góc A của tam giác ABC để định dạng đáy
a/ \(SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\)
Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)
\(\left\{{}\begin{matrix}AH\perp BC\\AH\perp SB\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\)
b/ \(\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân tại A \(\Rightarrow SA=AB=2a\)
Kéo dài MO cắt AB tại N \(\Rightarrow N\) là trung điểm AB \(\Rightarrow MN//BC\Rightarrow MN\perp\left(SAB\right)\)
Do AC cắt (SOM) tại O, mà \(AO=CO\Rightarrow d\left(C;\left(SOM\right)\right)=d\left(A;\left(SOM\right)\right)\)
Từ A kẻ \(AK\perp SN\Rightarrow AK\perp\left(SOM\right)\)
\(\Rightarrow AK=d\left(A;\left(SOM\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{SA^2}\Rightarrow AK=\frac{SA.AN}{\sqrt{SA^2+AN^2}}=\frac{2a\sqrt{5}}{5}\)
\(SA\perp\left(ABC\right)\Rightarrow SA\perp BC\)
Mà \(BC\perp AB\Rightarrow BC\perp\left(SAB\right)\)
b/ Gọi N là trung điểm SA \(\Rightarrow MN\) là đường trung bình tam giác SAB
\(\Rightarrow MN//SB\Rightarrow SB//\left(CMN\right)\)
\(\Rightarrow d\left(SB;CM\right)=d\left(SB;\left(CMN\right)\right)=d\left(S;\left(CMN\right)\right)\)
Mặt khác SA cắt \(\left(CMN\right)\) tại N
\(NS=NA=\frac{1}{2}SA=a\Rightarrow d\left(S;\left(CMN\right)\right)=d\left(A;\left(CMN\right)\right)\)
\(CM=\sqrt{BC^2+BM^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)
Kẻ \(AH\perp CM\Rightarrow\Delta MHA\sim\Delta MBC\) (tam giác vuông có 1 góc đối đỉnh)
\(\Rightarrow\frac{AH}{BC}=\frac{AM}{CM}\Rightarrow AH=\frac{BC.AM}{CM}=\frac{a\sqrt{5}}{5}\)
Từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(CMN\right)\right)\)
\(\frac{1}{AK^2}=\frac{1}{AN^2}+\frac{1}{AH^2}\Rightarrow AK=\frac{AN.AH}{\sqrt{AN^2+AH^2}}=\frac{a\sqrt{6}}{6}\)
Hình bạn tự vẽ
Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)
Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)
(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)
Dễ dàng nhận ra ABKD là hình vuông
\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)
\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)
\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)
Kéo dài IH và CB cắt nhau tại K
\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)
\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)
\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)
\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)
\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)
\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)
\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)
Bạn ghi lại đề, đề bài từ đoạn "gọi M, Q..." trở đi là thấy ko chính xác nữa