K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Bạn tự vẽ hình nha

a) Do ABCD là hình bình hành ⇒ Góc A = góc C

\(\dfrac{1}{2}\)góc A = \(\dfrac{1}{2}\)góc C ⇒ Góc DAM = Góc BCN

Xét tam giác ADM và tam giác CBN có:

AD = BC ( ABCD là hình bình hành)

Góc DAM = góc CBN ( Chứng minh trên )

Góc ADB = góc ABC ( ABCD là hình bình hành )

⇒ Tam giác ADM = tam giác CBN (g.c.g)

⇒ BN = DM ( 2 cạnh tương ứng )

Vì ABCD là hình bình hành ⇒ AB = CD

⇒ BN + AN = CM + DM.

Mà BN = DM ⇒ AN = MC. Do AN song song với MC ( vì AB song song với CD)

ANCM là hình bình hành.

b) Xét tứ giác BMDN có BN = DM ; BN song song với DM ( do AB song song với CD)

⇒ BMDN là hình bình hành ⇒ BM = DN

1 tháng 10 2019

ABCD là hình bình hành 

=> AD = BC (tc)

     góc ADC = góc CBA (tc)     (1)

     góc DAB = góc BCD (tc)       (2)

AM; CN là phân giác của góc DAB; góc BCD (Gt)

=> DAM = 1/2. góc DAB và BCN = 1/2. góc BCD (tc)

=> góc DAM = góc BCN   ; (1)(2)

=> tam giác ADM = tam giác CBN (g-c-g)

=> AM = NC (đn)

có AN // MC do ABCD là hình bình hành (gt)

=> ANCM là hình bình hành (dh)

a) * Vì ABCD là hình bình hành(gt)

=> \(\widehat{A}=\widehat{C}\)\(\widehat{B}=\widehat{D};AD=BC;AB//CD\)tính chất)

_ Ta có AM là tia phân giác của GÓC A => \(\widehat{A_1}=\widehat{A_2}=\frac{\widehat{A}}{2}\left(1\right)\)

_Ta có CN là tia phân giác của GÓC C =>\(\widehat{C_1}=\widehat{C_2}=\frac{\widehat{C}}{2}\left(2\right)\)

_ Từ (1) (2) => \(\widehat{A_1}=\widehat{C_2}\)

* Xét \(\Delta ADM\) và \(\Delta CBN\)có:

\(\widehat{A_1}=\widehat{C_2}\)cmt)

AD=BC( cmt)

GÓC B=GÓC D

=> \(\Delta ADM=\Delta CBN\left(g.c.g\right)\)

=>AM=CN (3) ( 2 cạnh tuiwng ứng)

\(\widehat{M_1}=\widehat{N_1}\) ( 2 góc tương ứng)

* Mà AB//CD( gt) 

\(N\in AB;M\in CD\left(gt\right)\)

=>BN//CM => \(\widehat{N_1}=\widehat{C_1}\)2 góc SLT)

=> \(\widehat{M_1}=\widehat{C_1}\)

Mà 2 góc này ở vị trí Đồng vị

=> AM//CN(4)

* Từ (3)(4) 

=> AMCN là hình bình hành

_ Cậu tự vẽ hình xong đặt chỉ số ạ_

_tham khảo bài àm trên đây ạ, chúc cậu học tốt '.'

22 tháng 10 2023

Bài 2:

AK=AB/2

CI=CD/2

mà AB=CD

nên AK=CI

Xét tứ giác AKCI có

AK//CI

AK=CI

Do đó: AKCI là hình bình hành

=>AC cắt KI tại trung điểm của mỗi đường(1)

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AC,KI,BD đồng quy

Bài 1:

a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)

\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)

mà \(\widehat{ADC}=\widehat{ABC}\)

nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)

Xét ΔEAD và ΔFCB có

\(\widehat{A}=\widehat{C}\)

AD=CB

\(\widehat{EDA}=\widehat{FBC}\)

Do đó: ΔEAD=ΔFCB

=>\(\widehat{AED}=\widehat{CFB}\)

=>\(\widehat{EDF}=\widehat{CFB}\)

mà hai góc này đồng vị

nên DE//BF

b: Xét tứ giác DEBF có

DE//BF

BE//DF

Do đó: DEBF là hình bình hành

30 tháng 6 2017

(x-4/3).(x+2/7).(4/7)=0

30 tháng 6 2017

Hình bình hành

25 tháng 9 2021

Vì ABCD là hình bình hành

⇒ AB//CD

Ta có :

AM là p/g của A

NC là p/g của C

⇒ DAM=BCN

⇒ AM//NC ( slt )

Xét hình thang AMCN có

AD//BC ( gt)

AM//CD (cmt)

⇒ AMCN là hình bình hành