K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)

Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)

\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)

1 tháng 10 2019

Ta co:\(\Sigma\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}=\Sigma\frac{\left(y+\frac{1}{z}\right)^2}{z+\frac{1}{x}}\ge\frac{\left(x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}{x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}=x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)Ta lai co:

\(\Sigma x+\Sigma\frac{1}{x}=\Sigma\left(x+\frac{1}{4x}\right)+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3+\frac{3}{4}.\frac{9}{x+y+z}\ge3+\frac{3}{4}.\frac{9}{\frac{3}{2}}=\frac{15}{2}\)

Dau '=' xay ra khi \(x=y=z=\frac{1}{2}\)

Vay \(P_{min}=\frac{15}{2}\)khi \(x=y=z=\frac{1}{2}\)

1 tháng 10 2019

mấy câu trên bn giải đc k ak ? Giải giúp mik vs :3

25 tháng 7 2019

Câu 1:

a,Bạn tự vẽ

b,Phương trình hoành độ giao điểm của (d1) và (d2) là:

\(\(\(-2x+3=x-1\Rightarrow-3x=-4\Rightarrow x=\frac{4}{3}\)\)\)

\(\(\(\Rightarrow y=\frac{4}{3}-1=\frac{1}{3}\)\)\)

Vậy tọa độ giao điểm của (d1) và (d2) là \(\(\(\left(\frac{4}{3};\frac{1}{3}\right)\)\)\)

c,Đường thẳng (d3) có dạng: y = ax + b

Vì (d3) song song với (d1) \(\(\(\Rightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b\ne3\end{cases}}\)\)\)

Khi đó (d3) có dạng: y = -2x + b

Vì (d3) đi qua điểm A( -2 ; 1) nên \(\(\(\Rightarrow x=-2;y=1\)\)\)

Thay x = -2 ; y = 1 vào (d3) ta được:\(\(\(1=-2.\left(-2\right)+b\Rightarrow b=-3\)\)\)

Vậy (d3) có phương trình: y = -2x - 3

Câu 2:

\(A=\frac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}\left(a>0;b>0;a\ne b\right)\)(Đề chắc phải như này)

\(\(\(=\frac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}.\frac{\sqrt{a}-\sqrt{b}}{1}\)\)\)

\(\(\(=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)\)\)

\(\(\(=\sqrt{a}^2-\sqrt{b}^2\)\)\)

\(\(\(=a-b\)\)\)

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai: a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1. b, Hàm số đồng biến khi m < 1. c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1. d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2). Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng A. Đồ thị hàm số luôn đi qua điểm A ( 0;1) B. Điểm M ( 0;...
Đọc tiếp

Câu 1: Cho hàm số y = (m -1)x - 2 ( m \(\ne\) 1 ), trong các câu sau câu nào đúng, câu nào sai:

a, Hàm số luôn đồng biến \(\forall\) m \(\ne\) 1.

b, Hàm số đồng biến khi m < 1.

c, Đồ thị hàm số luôn cắt trục tung tại điểm -2 \(\forall\) m \(\ne\) 1.

d, Đồ thị hàm số luôn đi qua điểm A ( 0; 2).

Câu 2: Cho hàm số y = 2x + 1. Chọn câu trả lời đúng

A. Đồ thị hàm số luôn đi qua điểm A ( 0;1)

B. Điểm M ( 0; -1) luôn thuộc đồ thị hàm số.

C. Đồ thị hàm số luôn song song với đường thẳng y = 1 - x

D. Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ bằng 1

Câu 3: Cho hàm số y = ( m + 1)x + m - 1. Kết luận nào sau đây là đúng?

A. Với m > 1, hàm số y là hàm số đồng biến

B. Với m > 1, hàm số y là hàm số nghịch biến

C. Với m = 0, đồ thị hàm số đi qua gốc tọa độ.

D. Với m = 2, đồ thị hàm số đi qua điểm có tọa độ ( \(-\frac{1}{2}\);1)

Câu 4: Hai đường thẳng y = ( 2 - \(\frac{m}{2}\))x + 1 và y = \(\frac{m}{2}\)x + 1 ( m là tham số) cùng đồng biến khi:

A. -2 < m < 0

B. m > 4

C. ) < m < 4

D. -4 < m < -2

Câu 5: Cho ba đường thẳng ( d1): y = x - 1; (d2): y= 2 - \(\frac{1}{2}\)x; ( d3): y = 5 + x. So với đường thẳng nằm nganng thì:

A. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d2

B. Độ dốc của đường thẳng d1 lớn hơn độ dốc của đường thẳng d3

C. Độ dốc của đường thẳng d3 lớn hơn độ dốc của đường thẳng d2

D. Độ dốc của đường thẳng d1 và d3 như nhau

1
8 tháng 11 2019

Minh An, Nguyễn Ngọc Linh, tth, Phạm Lan Hương, Vũ Minh Tuấn, Lê Nguyễn Ngọc Hà, Linh Phương, Duyên, Toàn Nguyễn Đức, Akai Haruma, Băng Băng 2k6, No choice teen, Nguyễn Lê Phước Thịnh, HISINOMA KINIMADO, Lê Thị Thục Hiền, Nguyễn Huy Tú, Nguyễn Huy Thắng, Nguyễn Thanh Hằng, Hồng Phúc Nguyễn, Mysterious Person, soyeon_Tiểubàng giải, Võ Đông Anh Tuấn, Phương An, Trần Việt Linh,....

17 tháng 9 2019

1.

Gọi A là tọa độ giao điểm của (d1) và (d2)

Xét phương trình hoành độ giao điểm của d1 và d2 

\(x+4=\frac{-1}{2}x+\frac{7}{4}\)

\(\Leftrightarrow x+4=\frac{-2x+7}{4}\)

\(\Leftrightarrow4x+16=-2x+7\)

\(\Leftrightarrow6x=-9\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Thay x = -3/2 vào ( d1 ) ta được:

y = -3/2 + 4 = 5/2

Vậy tọa độ giao điểm của 2 đường thẳng là   A (-3/2 ; 5/2 )

2.

a)

x y=3/4x-3 0 -3 0 4

0 y x -3 4 y=3/4x-3 B C H

b) Áp dụng hệ thức lượng vào tam giác OBC vuông tại O

\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{1}{4^2}+\frac{1}{\left(-3\right)^2}\)

\(\Leftrightarrow\frac{1}{OH^2}=\frac{25}{144}\)

\(\Leftrightarrow OH^2=\frac{144}{25}\)

\(\Leftrightarrow OH=\frac{12}{5}=2,4\)

Vậy khoảng cách từ gốc tọa độ đến đường thẳng (D) là 2,4 

Học tốt!!! 

NV
6 tháng 7 2020

Pt hoành độ giao điểm:

\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)

\(\Delta'=1+2m>0\Rightarrow m>-\frac{1}{2}\)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)

\(x_1x_2+y_1y_2=5\)

\(\Leftrightarrow x_1x_2+\frac{1}{4}x_1^2x_2^2=5\)

\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-20=0\)

\(\Rightarrow\left[{}\begin{matrix}x_1x_2=-2+2\sqrt{6}\\x_1x_2=-2-2\sqrt{6}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2m=-2+2\sqrt{6}\\-2m=-2-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\sqrt{6}-1\\m=\sqrt{6}+1\end{matrix}\right.\)