Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\\ \Rightarrow2f\left(x\right)=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\\ 2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\\ 2f\left(x\right)=2\left(5x^4-3x^3+2x^2+4x-7\right)\\ \Rightarrow f\left(x\right)=5x^4-3x^3+2x^2+8x-14\)
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\\ \Rightarrow g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\\ g\left(x\right)=6x^4-3x^2-5-5x^4+3x^3-2x^2-8x+14\\ g\left(x\right)=x^4+3x^3-5x^2-8x+9\)
( fx) + g(x) + (f(x) - g(x) = 6x^4 - 3x^2 - 5 + 4x^4 - 6x^3 + 7x^2 + 8x - 9
= 10x^4 + 4x^2 + 8x - 14
=> 2fx = 2 ( 5x^4 + 2 x^2 + 4x - 7)
=> f(x) = 5x^4 + 2x^2 + 4x - 7
Tính tiếp g(x) nha
a: \(f\left(x\right)+g\left(x\right)-h\left(x\right)\)
\(=5x^5-4x^4+3x^3-x^2-3x+4+x^5-2x^4+x^3-x+7\)
\(=6x^5-6x^4+4x^3-x^2-4x+11\)
f(x)-g(x)-h(x)
\(=15x^5-12x^4+9x^3-7x^2+7x+x^5-2x^4+x^3-x+7\)
\(=16x^5-14x^4+10x^3-7x^2+6x+7\)
b: f(x)+2g(x)=0
\(\Leftrightarrow10x^5-8x^4+6x^3-4x^2+2x+2-10x^5+8x^4-6x^3+6x^2-10x+4=0\)
\(\Leftrightarrow2x^2-8x+6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
\(f\left(x\right)=8x^4-7x^3+7x^2+\frac{29}{5}x-\frac{1}{3}\)
\(g\left(x\right)=-8x^4-7x^3-3x^2+\frac{82}{3}\)
\(f\left(x\right)+g\left(x\right)=-14x^3+4x^2+\frac{29}{5}x+27\)
Giải:
a) \(h\left(x\right)=f\left(x\right)+g\left(x\right)\)
\(\Leftrightarrow h\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4+x^5-9+2x^2+7x^4+2x^3-3x\)
\(\Leftrightarrow h\left(x\right)=x+3x^2\)
b) Để đa thức h(x) có nghiệm
\(\Leftrightarrow h\left(x\right)=0\)
\(\Leftrightarrow x+3x^2=0\)
\(\Leftrightarrow x\left(1+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\1-3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến
f(x)=x2+2x3−7x5−9−6x7+x3+x2+x5−4x2+3x7
= -9 - 2x2 + 3x3 - 6x5 - 3x7
g(x)=x5+2x3−5x8−x7+x3+4x2−5x7+x4−4x2−x6−12
= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8
h(x)=x+4x5−5x6−x7+4x3+x2−2x7+x6−4x2−7x7+x
= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7
b) Tính f(x) + g(x) − h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)
= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7
= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8
\(f\left(x\right)+g\left(x\right)=6x^4-3x^2-5\)
\(f\left(x\right)-g\left(x\right)=4x^4-6x^3+7x^2+8x-9\)
suy ra: \(\left[f\left(x\right)+g\left(x\right)\right]+\left[f\left(x\right)-g\left(x\right)\right]=6x^4-3x^2-5+4x^4-6x^3+7x^2+8x-9\)
\(\Leftrightarrow\)\(2f\left(x\right)=10x^4-6x^3+4x^2+8x-14\)
\(\Rightarrow\)\(f\left(x\right)=5x^4-3x^3+2x^2+4x-7\)
\(g\left(x\right)=6x^4-3x^2-5-f\left(x\right)\)
\(=x^4+3x^3-5x^2-4x+2\)