Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔACD có
AB=AC
BD=CD
AD chung
=>ΔABD=ΔACD
b: ΔABC cân tại A
mà AD là trung tuyến
nên AD vuông góc BC
d: DG là đường trung bình
=>DG//AC
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
c: DA=DE
DE<DC
=>DA<DC
d: Xét ΔDAI vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADI=góc EDC
=>ΔDAI=ΔDEC
=>DI=DC
=>ΔDIC cân tại D
a) Xét ΔABD và ΔACD có:
AD chung
góc ABD=góc ACD ( do AD là phân giác của góc BAC)
AB=AC ( ΔABC cân tại A)
Do đó:ΔABD=ΔACD (c-g-c) (đpcm)
Ta có:
AD vuông góc BC(tính chất Δ vuông)
EH vuông góc BC (theo đầu bài)
=>AD//EH (cùng vuông góc với BC)
=>góc ADE=góc DEH (2 góc so le trong)
Lại có:ΔDEC cân theo câu c:
=>góc EDC=góc ECD
mà góc ECD=góc ABD (ΔABC cân tại A)
=>góc EDC=góc ABD.
Xét ΔBAD có: góc ABD + góc BAD=90 độ (do ΔBAD vuông tại D)
và ΔDEH có: góc EDH + góc DEH =90 độ (do ΔDEH vuông tại H)
=> góc BAD=góc DEH
Mà góc BAD=góc DAE (AD là phân giác của góc A)
góc ADE=góc DEH (2 góc so le trong)
=>góc DAE=góc ADE
=>ΔAED cân tại E
=>DE=AE
mà DE=EC (ΔDEC cân tại E)
=>AE=EC
=>E là trung điểm của AC
=>3 điểm B,G,E thẳng hàng (đpcm)
B N C A D M
a,Xét tam giác vuông ABD và NBD có
BD chung
ABD^=NBD^
=>Tam giác ABD = tam giác NBD (ch-gn)
c,Ta có : AB>AD
NC>ND
Mà AD=ND
=>AB+NC>2AD
Hình bạn tự vẽ nha!
a) Xét 2 \(\Delta\) \(ABD\) và \(ACD\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{A}\))
Cạnh AD chung
=> \(\Delta ABD=\Delta ACD\left(c-g-c\right).\)
b) Theo câu a) ta có \(\Delta ABD=\Delta ACD.\)
=> \(\widehat{ADB}=\widehat{ADC}\) (2 góc tương ứng).
Ta có: \(\widehat{ADB}+\widehat{ADC}=180^0\) (vì 2 góc kề bù).
Mà \(\widehat{ADB}=\widehat{ADC}\left(cmt\right)\)
=> \(2.\widehat{ADB}=180^0\)
=> \(\widehat{ADB}=180^0:2\)
=> \(\widehat{ADB}=90^0.\)
=> \(\widehat{ADB}=\widehat{ADC}=90^0\)
=> \(AD\perp BC.\)
c) Ta có \(\widehat{BAD}=\widehat{CAD}\) (vì \(AD\) là tia phân giác của \(\widehat{A}\))
=> \(\widehat{NAD}=\widehat{MAD}.\)
Xét 2 \(\Delta\) vuông \(AND\) và \(AMD\) có:
\(\widehat{AND}=\widehat{AMD}=90^0\left(gt\right)\)
Cạnh AD chung
\(\widehat{NAD}=\widehat{MAD}\left(cmt\right)\)
=> \(\Delta AND=\Delta AMD\) (cạnh huyền - góc nhọn) (đpcm).
Chúc bạn học tốt!